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ABSTRACT
Micromobility vehicles, such as bicycles, are often left on the side-
walk, where they limit the space of the already narrow pedestrian
zone. A better understanding of micromobility parking and the
possibility to predict the demand is needed to improve the manage-
ment of these facilities and ultimately to prevent the obstruction of
public space. Previous research was mainly focused on the parking
of other vehicles, such as cars, introducing a lack of research and
data related to micromobility parking.

Therefore, this research aimed to use historical counts of the
number of parked micromobility vehicles along with neighborhood
characteristics to analyze and predict the parking occupancy on the
sidewalk. To achieve this goal, both supervised and unsupervised
machine learning techniques were applied. Tree-based ensemble
models proved to be suitable for predicting parking occupancy. In
terms of predictive features, historical observations were the most
influential predictor. The inclusion of the cluster results and neigh-
borhood variables such as land use and the presence of points of
interest further improved the predictions. Furthermore, clustering
has made it possible to summarize multivariate information and to
identify areas of similar characteristics.

KEYWORDS
Micromobility vehicles, parking occupancy, city accessibility, ma-
chine learning, mobility barriers, geographic information system

1 INTRODUCTION
Amsterdam is known as one of the most bicycle-friendly cities in
the world. It is estimated that there are about 900,000 bicycles, com-
pared to the population of 800,000 inhabitants [22]. The bicycle
takes residents and visitors to any destination quickly and easily,
whether it is going to work or university, taking the kids to school,
running errands or just exploring the city. Cycling is environmen-
tally friendly, contributes to a healthy lifestyle and can save time
and money compared to other means of transport. By occupying
relatively little space, the bicycle also contributes to an accessible
and attractive city [21, 22].

However, there is also a downside to the frequent use of the
bicycle. Due to the enormous number of cyclists, the public space is
becoming increasingly crowded. Parking the bicycles, in particular,
is becoming a serious challenge. In more and more parts of the
city, the demand for parking spaces seems to exceed the supply
[21, 22]. Due to the lack of available parking facilities and people’s
negligence, bicycles are often left on the sidewalk, chained to lamp
posts or against bridge railings. This limits the space on the already
narrow sidewalks and puts a lot of pressure on the pedestrian area.
In contrast to the traffic space for other means of transport, the
sidewalk fulfills several functions [23, 24]. Primarily, it is allocated

as a walking space for pedestrians. In addition, the sidewalk pro-
vides space for terraces and shop displays, as well as for functional
objects and street furniture. Incorrectly parked vehicles can block
and limit the free passage space on the sidewalk. Although they are
only temporary obstacles, they can pose a hazard to people with
mobility problems and physical limitations, such as someone with
a wheelchair, a walker or a pram [23, 24].

Micromobility vehicles include small-scale vehicles, such as bi-
cycles, scooters, and skateboards, that are often used for short-
distance trips [5]. A better understanding of micromobility parking
and the possibility of predicting the demand is needed to improve
the management of these facilities and ultimately to prevent the
obstruction of public space by informally parked vehicles. With
these insights, city officials can make informed decisions about
implementing parking measures and, for example, optimize the
placement of existing parking facilities or add more facilities in
certain areas. Furthermore, parking forecasts can be integrated into
route planning applications, providing pedestrians with optimized
routes, so that they can avoid temporary obstacles or at least be
aware of them.

While the parking behavior of other means of transport such
as cars and micromobility sharing systems has received quite a
lot of attention in the literature, only a limited number of studies
examined the accessibility of the public space with regard to parked
micromobility vehicles. The focus of these mostly observational and
cross-sectional studies seems restricted to specific locations such as
public transport stations [1, 27] or work and educational locations
[30, 31]. Other, more generic locations in the city, such as shopping
streets, or the primary parking location, i.e. residential areas, are
hardly mentioned. In addition, most studies focused on historical
observations and temporal information, not incorporating other
external sources, such as geospatial attributes.

In the context of the above, the aim of this research was to use
historical data on the number of micromobility vehicles parked
on sidewalks, along with neighborhood characteristics, to analyze
parking behavior and create models that can predict the number
of vehicles parked on the sidewalk at a given time per sidewalk
segment. The results can be used to analyze the accessibility of the
city and identify potential bottlenecks.

In order to achieve the goal, the research is structured around
the main research question:

To what extent can clustering and regression modeling be used for
sparse spatio-temporal data on the parking behavior of micromobility
vehicles to assess the accessibility of sidewalks?

To answer this research question, the supporting sub-questions
are formulated:
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(1) To what extent can clustering techniques be used to analyze
the spatial variations in the parking occupancy of micromo-
bility vehicles with regard to neighborhood characteristics?

(2) To what extent can regression modeling be used to predict
the parking occupancy of micromobility vehicles on side-
walks?

(3) What is the impact of the neighborhood characteristics and
cluster results on the performance of the regression models?

This paper consists of eight sections. In section 2, the work
related to this study is discussed. Section 3 provides a general
overview of the approach. The datasets used and the preprocessing
steps are described in section 4. Sections 5 and 6 describe the aim,
methods and results of clustering and regression modeling respec-
tively. In section 7 the outcomes of this study are discussed based
on the state of the art and the limitations are considered. Finally,
the conclusion is drawn in section 8.

2 RELATEDWORK
The following section presents the results of the previous literature.
The section is divided into three parts. The first part takes a closer
look at the application of cluster analysis to geospatial data, while
the other two parts focus on the types of models and features used
to predict parking occupancy.

2.1 Cluster analysis of spatial data
Cluster analysis has proven to be a valuable technique in spatial
analysis and spatial data mining. The rationale of spatial clustering
is that a set of spatial objects are grouped into meaningful groups so
that the difference between objects in the same group is minimized
[12]. Those clusters can be used to identify and locate areas with
similar characteristics and to discover spatial patterns or hotspots.
Those techniques have previously been applied in various domains,
such as landscape ecology, customer segmentation or traffic.

An example is the research of Selvi and Caglar [25], which aimed
to compare multivariate mapping of traffic accidents produced by
k-means, k-medoids and hierarchical clustering. The results have
shown that using clustering methods, spatial objects with similar
properties can be identified. K-medoids delivered the best results
in terms of cluster separation. In another study Li et al. [16] used k-
means clustering to identify high-risk areas for the risk assessment
of water pollution sources. Similarly, Xu et al. [29] verified the
suitability of k-means clustering for spatial analysis to evaluate
urban flood risk in the Haikou region of China.

Furthermore, cluster analysis has been applied in traffic-related
applications, e.g. in traffic forecasting or for detecting anomalous
traffic patterns. Studies by Sfyridis and Agnolucci [26] and Gecchele
et al. [11] proposed a method for estimating annual average daily
traffic (AADT) in England and Italy, respectively, combining clus-
tering for the grouping of roads with regression modeling. While
Sfyridis and Agnolucci [26] used the k-prototypes algorithm in
combination with a comprehensive set of numerical and categorical
variables, Gecchele et al. [11] focused on temporal patterns using
different types of clustering algorithms. The findings of both stud-
ies indicate that data clustering can contribute significantly to the
reduction of prediction errors.

2.2 Models used for parking demand prediction
Several state-of-the-art algorithms have been used in the literature
to predict parking occupancy. Three methods are distinguished:
model-based, parametric and non-parametric techniques [4, 18, 28].

With model-based techniques, the underlying parking behavior
is explicitly modeled based on theoretical assumptions. An example
is the study by Xiao et al. [28], which presents a Markov queueing
model that describes the occupancy change of a car parking facility.

Parametric and non-parametric techniques mainly use large
amounts of data to train models and generate predictions [4, 18, 28].
Parametric approaches rely on statistical models, such as exponen-
tial smoothing, while non-parametric models use techniques from
the field of artificial intelligence, such as decision trees.

Several studies have proven the success of parametric models
[9, 32]. For instance, Yu et al. [32] suggested an autoregressive
integrated moving average (ARIMA) model to predict the avail-
able parking spaces in a parking lot of a mall in China. Similarly,
Fokker et al. [9] compared several forecasting models, including
the seasonal ARIMA and exponential smoothing models.

A large number of studies have employed machine learning
techniques, including more complex models such as artificial neural
networks (ANN) [3, 4] or ensembling algorithms such as random
forest (RF) [4, 8, 27]. Dias et al. [8] compared two approaches, a
RF and an ARIMA model, to predict occupancy trends for bicycle
sharing stations in Barcelona. Here the RF has proven to be a better
solution than the ARIMA model in terms of precision. Comparable
results were delivered by a study of Balmer et al. [4] in which they
predicted the on-street car parking occupancy using a RF and an
ANN. The RF produced more accurate predictions than the ANN.

2.3 Features used for parking demand
prediction

Existing research used different attributes to predict vehicle use
and parking occupancy. This includes historical data, temporal
information, weather conditions and geospatial attributes.

Historical parking occupancy seems to be the most crucial fea-
ture, as it has been utilized by all related studies to predict parking
occupancy [2–4, 8, 9, 17]. This data is essential to time-series models
such as ARIMA. Opposed to these models, most machine learning
models cannot deal with consecutive time-series data. Here the data
needs to be transformed, and features that represent and summarize
past observations must be extracted.

Previous research found that the inclusion of temporal infor-
mation such as time of the day, day of the week or holidays has
a great influence on parking occupancy [2, 8, 9, 17]. Depending
on the location of a parking space, the main time of usage will
change. Li et al. [17] and Arjona et al. [2] demonstrated that the
time of the day/week and calendar effects, such as holidays, need
to be taken into consideration in parking occupancy patterns. In
addition, artistic and sports events close to the parking facilities
have proven to be an essential factor for parking forecasts [9].

Furthermore, the results of several studies pointed out the impor-
tance of weather features for predicting bicycle usage. For example,
Dias et al. [8] observed the impact of extreme temperatures and
rainfalls on the usage of bicycles. Similarly, Badii et al. [3] concluded
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that the inclusion of weather features could produce significantly
better predictions of car parking demand.

Few studies have proven that geospatial information contributes
positively to the accuracy of predictions. Yan and Zheng [31] suc-
cessfully implemented models that linked bicycle parking demand
of Shanghai’s central business to the land use, expressed by the
number of employment positions and (destination) attraction. Sim-
ilarly, Balmer et al. [4] included land use (residential, office and
industrial) and point of interest features in their forecasting models,
which resulted in a performance increase of 25% compared to the
baseline, which only used historical occupancy and time as an input
for the same models. Other geospatial features suggested to be used
as inputs for the models were the wealth of a neighborhood and
the proximity to places such as public transportation, schools, and
businesses [8, 9].

3 APPROACH
During this project, different methods were applied to achieve the
stated goals. Figure 1 provides a schematic representation of the
experiment pipeline. Before the datasets were merged, they were
pre-processed. Then a cluster analysis was done with the goal to
identify spatial variations in the parking occupancy of micromobil-
ity vehicles with regard to the neighborhood characteristics. Finally,
several machine learningmodels were trained to predict the parking
occupancy on the sidewalks using the historical parking occupancy,
neighborhood characteristics and cluster results. The models were
trained with different feature combinations to assess the influence
of these features.

Figure 1: Schematic overview of the approach

3.1 Software
During this project, Python 3.7 was used in combination with a
number of widely used data science and machine learning libraries.
The pre-processing and exploratory data analysis were performed
using NumPy (v1.22), pandas (v1.4.2) and GeoPandas (v0.11.0). For
the clustering, the kmodes (v0.12.1) library was used. Various scikit-
learn (v1.1) tools were applied during the training and evaluation
of the regression models. Finally, to visualize the results of this
research, matplotlib (v3.5.2), folium (v0.12.1) and seaborn (v0.11.2)
were used. All code written during this research has been made
available in a GitHub repository 1.

1Link to Github: https://github.com/Amsterdam-Internships/Micromobility-Parking

4 DATA DESCRIPTION
The city of Amsterdam has been chosen as the study area for this
project. Therefore, the proposed methods were applied to sam-
ple data from that area. Several datasets regarding the parking
behaviour and neighborhood characteristics were used.

The vehicle parking data was provided by Trajan 2, a traffic and
mobility research bureau. In the years 2018 to 2021, they conducted
a study in which both the parking capacity and the number of
micromobility vehicles parked in the public space of Amsterdam
were manually counted by field workers.

Each observation in the dataset contains the parking capacity
and occupancy of a certain facility for a certain location at a certain
time. A location can have one or more types of parking facilities.
Specifically, the following variables are available: location id, street,
year, part of the day, location of the parking facility (i.e. inside or
outside the official facility), type of parking facility (e.g. no facility,
staple or rack), capacity of the parking facility and the parking
occupancy for different types of vehicles (e.g. bicycle, cargo bike
or scooter). In addition, separate GeoJson files were provided that
encode the geographic information, in this case polygons, of the
observed locations.

The vehicle parking dataset contains parking counts from 2018,
2019, 2020 and 2021, with one count per location per year. While the
counts in 2018, 2019 and 2021 took place in the afternoon, in 2021 the
count was done in the evening. The number of locations observed
varies from year to year. Most counts were carried out in 2018, with
32,510 locations. Both 2019 and 2021, contain approximately 15,600
locations, while 2020 has only about 13,000 locations.

Figure 2: Locations in the vehicle parking count dataset ob-
served in the years 2018, 2019, 2020, 2021

2Trajan. Bicycle study. Available from: https://www.trajan.nl/werkterreinen/fietsonderzoek.html
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Table 1: Description of the neighborhood datasets used in
this project

Dataset Description Length
Points of
interest
(function)

The location of different types of points
of interest with non-residential functions
(e.g. horeca, office, retail)

32,995

Points of
interest
(horeca)

The location of different types of points
of interest with horeca functions
(e.g. cafe, restaurant, coffeeshop)

4,171

Land use
The location and surface area for three
land use categories (i.e. residential,
services and work)

17,963

Public
transport

The location and modality type of public
transport stations. 231

Shopping
area

The location and surface area of different
types of shopping areas (e.g. core shopping
area or neighborhood center)

132

Looking at the geographical distribution of the observations (see
Figure 2), it appears that 2018 is the only year where counts were
made outside the city ring (A10), including the districts Nieuw-
West, Zuidoost and Noord. In 2020 observations are missing for
part of the canal belt and on the outskirts of the city. This means
that overall, only one observation is available for more than 50% of
all locations, while 38% of the locations have been counted in all
four years.

In addition, the dataset for this project was enhancedwith several
open-source data sources3 containing neighborhood characteristics
that potentially influence the parking occupancy. Table 1 provides
a brief description of these additional datasets. The datasets contain
different geometric features that represent the observed location
(see Figure 3). While locations in some datasets (e.g. points of in-
terest) are indicated by simple points, others have more complex
shapes such as (multi-)polygons (e.g. parking data). Furthermore,
some datasets contain information about the sidewalks (e.g. park-
ing data), while others contain information about the surrounding
buildings (e.g. land use) or streets (e.g. public transport).

4.1 Data preparation
Before the data was analyzed and used to build the prediction
models, it was pre-processed. This included converting the data
into a proper format, dealing with outliers, missing values, and
extracting valuable features. The raw parking data was in the long
format, which means that there were multiple occupancy counts
for each location for the different parking facility types. In order to
prepare the data for the analysis, the data was reshaped from the
long to the wide format, aggregating the parking occupancy per
location.

4.1.1 Missing values. In the first step, all datasets were inspected
for missing values. In the neighborhood datasets, no observations
with missing values were found. For the parking data, each location
was required to contain a valid geometric feature to merge the
3City of Amsterdam. Open Maps Data Amsterdam. Available from: https:
//maps.amsterdam.nl/open_geodata/

parking data with the neighborhood features. 150 locations without
this information were therefore removed. Furthermore, 79 locations
in the 2019 data were found to have no parking counts at all. Those
data points were completely removed because, without any parking
data, they could not provide valuable information for the analysis
As the deletion only affected about 0.5% of the locations, this had
no negative impact on the quality of the dataset.

4.1.2 Data merging. In order to analyze the relation between the
neighborbhood characteristics and the parking behavior, the datasets
were merged, using the geospatial information of each location.
Depending on the geometric object, the datasets were merged using
different techniques. Data covering areas, such as buildings (e.g.
land use), has been merged with the parking data based on the
intersection of their geometric objects. Intersection means that the
boundary or interior of the object intersects with that of the other
in some way. If several observations have been assigned to one
location, it has been decided to keep only the observation with
the largest overlap. In the event that no intersecting observation
was found, the closest observation was matched to the location
in the parking data. Datasets, such as the points of interest and
public transport, which were represented by points off the sidewalk,
were merged with the parking data based on the distance between
their geometric objects. The maximum distance within which the
nearest geometry can be retrieved is set at 100 m. This distance has
been chosen based on [21], which states that 100 m is the maxi-
mum distance people are willing to walk from the parking facility
to their final destination. Some results contained multiple output
records for a single input record. For this reason, a pivot table was
created in which the neighborhood information was aggregated.
The resulting attributes represent the number of locations per point
of interest within 100 m of a sidewalk segment.

Figure 3: Geometric features of the datasets

4.1.3 Feature extraction. The next step involved extracting and
creating relevant features to enhance and summarize the available
information. First, categorical attributes were one-hot encoded so
that numerical algorithms accept them. Any type of vehicle parked
incorrectly on the sidewalk can create a barrier to pedestrians. For
that reason, a feature was added to the dataset that summarized
the total parking occupancy of all vehicle types for each location.
The surface area of the sidewalk segments can differ per location.
In order to be able to compare the values of different locations,
attributes were created with the parking occupancy in relation

4



to the surface area of a location. For the points of interest (POI)
features, the frequency of occurrence of each function category
was calculated by dividing the number of points of a category by
the total number of points at a location.

Since ordinary machine learning algorithms are unable to deal
with data in a time series format, autoregressive features were added
that represent historically observed values: lag features that shift
a variable by a defined time period and rolling window features
that summarize a number of historical values. The choice of the
number of lags and the size of the window was limited because only
a maximum of four historical values were available in the data. For
the window feature, the values of all previous years were averaged
for each year. In addition, lag features have been created using the
parking values of the past one to three years.

4.1.4 Outliers. Finally, the data was inspected for possible outliers.
Almost all numerical characteristics related to parking capacity and
occupancy were positively skewed, including an excessive amount
of zeros. The maximum value for the number of vehicles parked
outside the parking facility was 3000 per 100 m2. Assuming that a
standard bicycle occupies approximately 1.2 m2 of area [22], any
value above 85 vehicles per 100 m2 was assumed to be an outlier
and therefore removed.

4.1.5 Final dataset. After pre-processing, the dataset contained
43,906 observations. The target variable was identified as the num-
ber of vehicles parked outside the official parking facilities on the
sidewalk per 100 m2. Concerning the parking data, the dataset con-
tained the capacity and four variables aggregating the historical
parking behavior. In addition, there were 16 features regarding
the points of interest with non-residential functions and 12 fea-
tures regarding the points of interest with horeca functions. Lastly,
the dataset included three features describing the land use, one bi-
nary variable for the shopping area and two features for the public
transport stations.

5 CLUSTERING SPATIAL DATA
Previous studies have shown the success of different clustering
techniques for geospatial data and the traffic domain [11, 25, 26, 29].
Therefore, in the first part of this project, cluster analysis was ap-
plied with the goal of grouping similar sidewalk segments based on
their neighborhood characteristics and parking occupancy. These
clusters were used to analyze spatial variations in the parking
behavior and to identify problematic locations along with their
neighborhood properties.

5.1 K-prototypes
In this study, the partition algorithm k-prototypes is applied based
on its success in related work [26]. Partition clustering algorithms
start with an initial partitioning and then iteratively relocate objects
between clusters based on some criteria until an optimal (local) par-
tition is reached. K-means and k-medoids are the two simplest and
best-known partition algorithms. A disadvantage of those methods
is that they only accept one type of data, numerical or categorical,
respectively. To overcome this problem, Huang [14] proposed k-
prototypes, which integrates distance metrics for numerical data

and dissimilarity measures for categorical data to enable clustering
objects of mixed data types.

5.2 Experimental setup
5.2.1 Validation. Like other partition algorithms, k-prototypes
requires specifying k, the number of clusters to be generated. To
find the most optimal value for k, several data-driven approaches
are available [15]. Using categorical variables, k-prototypes does
not allow calculation of the distance-based metrics such as the
Silhouette coefficient. Therefore, it was decided to implement the
Elbow method.

Figure 4: Selecting k number of clusters using the Elbow
method

For the Elbowmethod, thewithin-cluster sum-of-squares (WCSS),
or the sum of squared distances of all the samples and their cluster
centroid, was used. This value was calculated and plotted for 2 to 15
numbers of clusters. The optimal number of clusters is represented
by the point where the slope tends to decrease. Based on Figure 4,
it was concluded that the optimal number of clusters for this study
was six.

5.2.2 Normalisation. The numerical attributes in the data have dif-
ferent scales. With distance-based algorithms such as k-prototypes,
large-scale features are given a higher weight, leading to domi-
nance in the clustering. To avoid this, standardizing the numerical
features is recommended. Since several variables, such as land use
and frequency of POI occurrence, were already in the range of 0 to
1, it was decided to apply min-max normalization to comprise the
rest of the features to the same scale.

5.3 Results
The following paragraphs present the results of the cluster analy-
sis. A qualitative analysis was carried out to study the differences
among clusters and to investigate potential insights that the clusters
can provide about the relation between the parking behavior and
neighborhood characteristics. This analysis involved visualizing
the geospatial distribution of the resulting clusters by projecting
them onto a map of Amsterdam (see Figure 5) and using descrip-
tive statistics for the most relevant characteristics (see Table 2).
Specifically, the mean for numerical and the frequency for categor-
ical variables was calculated per cluster, and non-parametric tests
were performed to test whether the difference between clusters
was significant.

In cluster 0 (pink), the most common venues are offices (0.85).
The land use in this cluster is mainly residential (0.8) and a smaller
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Figure 5: Cluster results plotted on the map of Amsterdam

part is work (0.13). Figure 5 shows that the included locations are
spread over the city, with accumulations in the canal belt in the
Centrum and close to the Vondelpark in Zuid. The parking pressure
in this cluster is high (occupancy of 7.3 vehicles per 100 m2).

The second-largest cluster with 3,373 observations is cluster
1 (orange). In this cluster, there is a relatively high frequency of
education (0.11) and high land use of services (0.78). Locations
in this cluster are again spread throughout the entire city. Some
interesting locations in this cluster are the University of Amsterdam
at Science Park and the Vrije Universiteit in Zuid. The parking
pressure on these sidewalks is medium (occupancy of 5.6 vehicles
per 100 m2).

Cluster 2 (red), the smallest cluster (n = 1,276), contains a high
frequency of horeca venues (0.6), especially cafes and restaurants,
and a medium frequency of retail (0.22). In addition, the proportion
of shopping streets (0.53) and tram stops (0.27) in this cluster is
higher than in other clusters. The observations are mainly located
in the city center and throughout the city along the city streets in
the districts Centrum, Pijp (Zuid) and Baarsjes (West). The parking
pressure in this cluster is the highest (occupancy of 8.6 vehicles per
100 m2).

With about 21,300 observations, cluster 3 (light blue) is the most
common cluster in Amsterdam. Themap shows that this cluster cov-
ers large parts of the city, except the city center. Sidewalk segments
in this cluster are mainly characterized by a very high land use of
housing (0.97) and a low to medium parking pressure (occupancy
of 4.03 vehicles per 100 m2).

The locations on the outer parts of the city, in neighborhoods
like Sloterdijk, Zuidas, Westerpark, Westpoort and Nieuw West,
mainly belong to cluster 4 (green). This cluster is characterized by a
very high land use of work (0.91). There are also quite a few offices
and companies, with a frequency of 0.27 and 0.12 respectively. With

Table 2: Mean values of the main features of the cluster re-
sults

Cluster
0 1 2 3 4 5

Location count 1,474 3,373 1,276 21,370 2,875 1,907
Offices freq. 0.85 0.02 0.07 0 0.27 0.03
Retail freq. 0.04 0.02 0.22 0 0.03 0.88
Horeca freq. 0.02 0.01 0.6 0 0.01 0.05
Companies freq. 0.01 0.01 0.01 0.01 0.12 0
Education freq. 0.01 0.11 0.01 0.01 0 0.01
Residential
land use 0.8 0.13 0.57 0.97 0.03 0.64

Work land use 0.13 0.09 0.05 0.01 0.91 0.03
Services land use 0.07 0.78 0.38 0.02 0.06 0.32
Shopping area 0.14 0.15 0.53 0.05 0.1 0.55
Tram station 0.17 0.14 0.27 0.08 0.08 0.29
Occupancy in
per 100m2 3.43 2.83 3.76 1.95 1.78 3.63

Occupancy out
per 100m2 3.89 2.78 4.85 2.08 1.78 3.81

Occupancy
per 100m2 7.32 5.6 8.61 4.03 3.56 7.44

Capacity
per 100m2 4.53 4.6 4.75 2.25 2.66 4.56

a total occupancy of 3.56 vehicles per 100 m2, this cluster’s parking
pressure is the lowest.

The last cluster, 5 (dark blue), has a very high frequency of retail
(0.88). As in cluster 2, the share of shopping streets and tram stops
is also higher here than in other clusters (0.55 and 0.29 respectively).
Looking at Figure 5, it can be seen that the observations in this
cluster are located on the main city streets, which connect differ-
ent neighborhoods, such as Centrum, Baarsjes and Oud Zuid. The
parking pressure is comparably high as in cluster 0.

Finally, the non-parametric Kruskal-Wallis test was used to de-
termine whether the median of included variables in the six clus-
ters differed significantly. For all features displayed in Table 2, the
p-value was smaller than the significance level (a = 0.05). It was
therefore concluded that at least one cluster for each variable sig-
nificantly differs from the other clusters.

Overall, clusters with higher parking occupancy are mainly char-
acterized by high frequencies of retail and horeca and a certain
amount of residential buildings. The combination of these neigh-
borhood characteristics attracts two types of parking behaviour:
short-term parking for shopping and recreational purposes and
long-term parking for residents. Especially for a short visit to a
shop, people tend to park their vehicles outside a rack on the side-
walk. Moreover, the parking space for the residents of these central
locations is scarce, so vehicles are often parked in the public space.
Low parking is associated with a high land use of work and compa-
nies, mainly in the outer neighborhoods. This can be explained by
a much lower density of points of interest in these areas, which at-
tracts fewer people and therefore fewer parked vehicles. Companies
and offices might also offer more private parking facilities.
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6 PREDICTING PARKING OCCUPANCY
In the second part of this study, different regression models were
applied to predict parking occupancy. In addition to historical ob-
servations, neighborhood characteristics and cluster results were
used as input features in the models, and their influence on the
predictions of parking occupancy was investigated.

6.1 Regression models
Based on the previous literature, several parametric and non-parametric
approaches have demonstrated to provide accurate predictions re-
garding parking occupancy. Most time-series forecasting models,
such as ARIMA, require a minimum of 50 observations for accu-
rate estimation [13, 19]. Since the dataset in this study contained
a maximum of four observations per location, it was not possi-
ble to use these methods. Therefore, it was decided to focus on
non-parametric machine learning methods in this study.

A number of state-of-the-art machine learning algorithms were
selected, which have proven to perform well for parking occupancy
forecasting: random forest (RF), XGBoost and multilayer perceptron
(MLP). Consequently, a baseline was defined based on the average
parking behavior of a location over the past three years. For rea-
sonable predictive power, the trained models should yield better
results than the baseline.

6.1.1 Random forest. Random forest is an ensemble method that
consists of a collection of individual decision trees [6]. The model
is formed by generating a large number of decision trees (DT), each
using a different bootstrap sample of the features in the data. For
the final prediction, the RF takes the average output of all individual
DTs. An advantage of random forests is that the method is able to
model complex non-linear processes and is well suited for high-
dimensional data sets with various data types.

6.1.2 XGBoost. XGBoost, short for Extreme Gradient Boosting,
is another ensemble tree method that implements the gradient
boosting framework [7]. Opposed to a RF, XGBoost sequentially
creates new DTs that predict the residuals of its predecessor. These
are then added together to make the final prediction. To minimize
the loss when adding new DTs, the algorithm uses gradient descent.
Similarly to RF, XGBoost can efficiently handle large, sparse datasets
with mixed data and missing values.

6.1.3 Multilayer perceptron. The last model, a multi-layer percep-
tron, is a feed-forward artificial neural network (ANN) that con-
sists of an input layer, an output layer and an arbitrary number of
hidden layers [10]. During training, the model implements back-
propagation to find suitable parameters and minimize the error. An
advantage of the multi-layer perceptron is that it works well with
large datasets and can model highly nonlinear functions.

6.2 Features included in the models
Several studies have shown that parking occupancy predictions can
be improved when different data sources are added to the historical
parking data [2–4, 8, 9, 17]. The data in this study does not contain
a clear indication of time, and, in addition, only a maximum of four
historical observations are available. It was therefore not possible to
use temporal information or time-bound data such as the weather

or events in the prediction models. However, the large number of
locations covered in the data provided an excellent opportunity to
investigate the influence of geospatial factors on the forecasts.

Furthermore, based on the cluster results, new features were
constructed. The labels of the clusters were directly used as a cate-
gorical feature. In addition, the mean historical parking occupancy
was calculated per cluster.

To investigate the influence of the features, the models were
trained using different combinations of variables. In total, five mod-
els were trained, using only the historical counts, the historical
counts together with the neighborhood and/or cluster characteris-
tics and only the neighborhood and cluster characteristics.

6.3 Experimental setup
6.3.1 Hyperparameter optimization. In order to increase the perfor-
mance of the regression models, hyperparameter optimization was
applied to find the most optimal combination of parameters. For
each model, different sets of hyperparameters were specified and
evaluated using random search. Random search was chosen over
grid search because it is computationally lighter and faster. During
the search, 500 different combinations were randomly searched
within a given search space. The search spaces and the selected
parameters can be found in the GitHub repository 4.

6.3.2 Feature selection. During feature selection, a subset of the
most relevant features was created to improve the models’ per-
formance and reduce noise and computational costs. Tree-based
ensemble methods, such as RF or XGBoost, offer the possibility to
give the impurity-based importance of the included explanatory
variables. These insights were exploited to investigate the contri-
bution of the attributes to the performance of the models and to
select the most relevant subset of features.

6.3.3 Data splitting. The data was split into three subsets to train,
validate, and test the models. Because the data in this research
contains a temporal component, it was required to maintain the
chronological order during the split to avoid look-ahead bias. Due
to the scarcity of the data related to its temporal component, only
one split was possible, using 2019 for training (n = 15,462), 2020 for
validation (n = 12,880) and 2021 for testing the models (n = 15,564).

6.3.4 Validation. Metrics commonly used in research to evaluate
the performance of the models are the mean average error (MAE),
the mean squared error (MSE) and the root mean squared error
(RMSE). MAE represents the average of the absolute residuals in
the dataset, while the MSE is calculated by taking the average of the
squared residuals. As the name implies, the RMSE is the square root
of the MSE. The MAE and RMSE were preferred because they have
the same units as the dependent variable, making them easier to
interpret. Furthermore, the coefficient of determination, also known
as R squared (R2), was used for the validation. R2 indicates how
well the predictive variables in the model explain the variability in
the response variable.

4Link to Github: https://github.com/Amsterdam-Internships/Micromobility-Parking
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6.4 Results
The following section describes the results of the regression models
used to predict the parking occupancy of micromobility vehicles
on the sidewalk.

6.4.1 Model comparison. Table 3 shows the performance statistics,
in terms of MAE, RMSE and R2, for each model and feature set
combination using the test set. When comparing all models, it can
be seen that they have a relatively similar performance. In general,
the tree-based ensemble models XGBoost and RF outperformed
the MLP regressor for all three performance metrics. The MAE
values of the RF and XGBoost were almost the same for all feature
combinations, butwith regard to RMSE and R2, the RF outperformed
XGBoost. In addition, the RF delivered better predictions using
only the neighborhood features and cluster results. Looking at the
RMSE and R2, all models outperformed the baseline, while the
difference for the MAE was not much distinctive. The performance
of the fitted MLP models was very similar for nearly all feature
combinations. Furthermore, the MAE of the XGBoost and MLP
model, only including the neighborhood and cluster features, was
worse than that of the baseline.

Based on the performance metrics, the random forest regressor
using historical, neighborhood and cluster features was identified
as the best model. The RF could explain 58% of variation in the
predicted parking occupancy, and, on average, delivered a 2.20 dif-
ference between the predicted and observed parking occupancy in
terms of vehicles parked per 100 m2 sidewalk. The higher RMSE
value of 4.58 indicates that there was some variation in the magni-
tude of the residuals. Overall, the residuals were reasonably well
distributed, with a mean error of 0.001, implying that the model
has not greatly over- or underestimated parking occupancy.

Table 3: Error metrics on the test set for each combination of
feature set and model

Model Features MAE RMSE R2
Hist. Neigh. Clus.

Baseline X 2.28 7.23 -0.05
XGBoost X 2.28 4.8 0.54

X X 2.25 4.75 0.55
X X 2.23 4.73 0.55
X X X 2.21 4.7 0.56

X X 2.39 5.18 0.47
Random X 2.28 4.71 0.55
forest X X 2.24 4.71 0.56

X X 2.23 4.63 0.57
X X X 2.20 4.58 0.58

X X 2.28 4.71 0.56
Multilayer X 2.28 4.76 0.54
perceptron X X 2.26 4.86 0.53

X X 2.30 4.85 0.53
X X X 2.29 4.85 0.53

X X 3.33 5.99 0.28

Figure 6 provides more insight into the performance of the ran-
dom forest models for both the train and the test set. It can be
seen that the MAE is almost twice as high for the test set when the

historical observations are included in the model. This indicates
that the models are probably overfitting. When the exact historical
data is excluded, the overfitting is reduced. This can be seen from
the MAE values of the rightmost model, which are much closer.
Thus, by including the exact historical parking count as a predictor,
the model seems unable to generalize on the test data anymore.
This overfitting problem was also found for the other regression
models and using the other error statistics.

Figure 6: MAE of the random forest models on the train and
test set using historical (H), neighborhood (N) and/or cluster
(C) features

6.4.2 Spatial prediction variation. An assessment of the spatial vari-
ability of the prediction performance was carried out by comparing
the model’s performance across all sidewalk segments. Figure 7 on
the next page shows the number of parked vehicles on the sidewalk
predicted by the RF regressor together with the actual values and
the residuals for each sidewalk segment.

Overall, the two maps with the predicted and actual parking
occupancy show clear similarities in the distribution of areas with
high and low parking occupancy, with higher values in the center
and lower values in the outer neighborhoods. However, especially
in the canal belt, the model underestimated the parking counts.
This is also reflected by the red sidewalk segments in the residuals
map. For residential areas outside the center, the opposite is the
case. Here the predictions are slightly higher than the actual values.
Furthermore, it is noticeable that in areas with higher parking
counts, the magnitude of the residuals increases to a certain extent,
which can be seen by more saturated areas in the residuals map.

6.4.3 Feature importances. Finally, the importance of the differ-
ent features was investigated. Looking at Table 3, the performance
of the tree-based models was slightly improved by adding neigh-
borhood and cluster variables (4% for the RF). This indicates that
historical features were the most predictive factor for parking occu-
pancy. In fact, for the MLP, the inclusion of additional features led
to a decrease in the model’s performance. Excluding the historical
parking counts resulted in poorer performance for both XGBoost
and MLP. However, the RF achieved almost the same performance
as using only the historical observations as a predictor.

As mentioned before, tree-based models such as the RF can
provide feature importances. Figure 8 illustrates the importance
of the variables included in the RF model using all features. The
historical parking occupancy, both the mean and lag feature, were
identified as themost important predictors. Their importance scores
are three times higher than the values of the other input features.
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Figure 7: Predictions of the random forest regressor (left), actual values (middle) and residuals (right)

Figure 9 provides the feature importances of the RF model includ-
ing the neighborhood and cluster features. Here the most crucial
feature is the surface area of the sidewalk. Regarding the neigh-
borhood and cluster characteristics, the lists of the most important
characteristics are almost identical for both models. All three land
use features, residential, work and services, have proven to be
of some importance for the prediction of parking occupancy. A
number of points of interest features, namely offices, horeca and
retail are also among the most influential features. Other important
neighborhood features are the tram stations and shopping streets.
Finally, the cluster variables, i.e. the cluster category itself and the
parking occupancy averaged per cluster, have contributed valuable
information to the models.

Figure 8: Feature importances of the random forest using
historical, neighborhood and cluster features

The importance scores of the neighborhood and cluster charac-
teristics are higher in the model that included only these character-
istics. When including the exact historical parking count, it seems
that the model gave much more value to this attribute, limiting
the influence of other features. This is consistent with the findings
from Table 3. Here, adding the neighborhood and cluster features
only resulted in a 4% improvement of the MAE, while the model
with only these features performed just as well as the model with
only the exact historical counts. This again supports the assump-
tion that the models with the exact historical parking counts were
overfitting.

Figure 9: Feature importances of the random forest using
neighborhood and cluster features

7 DISCUSSION
This section discusses the observed results, links them to previous
research, and attempts to answer the proposed research questions.

7.1 Research questions
7.1.1 To what extent can clustering techniques be used to analyze the
spatial variations in the parking occupancy of micromobility vehicles
with regard to neighborhood characteristics? The cluster analysis
aimed to divide sidewalk segments into groups based on their prop-
erties, maximizing both the similarity of features within clusters
and the dissimilarity between clusters. Clustering, specifically k-
prototypes, has made it possible to summarize and visualize multi-
variate information by dividing sidewalk segments into meaningful
clusters. Based on those clusters, spatial patterns and areas with
comparable properties could be identified during the exploratory
phase of this research. In addition, the clusters helped to understand
the relationships between certain neighborhood characteristics and
the parking behavior of micromobility vehicles. With the help of do-
main knowledge, these insights could be interpreted and explained.
The findings of the cluster analysis can directly be applied for urban
planning to improve the management of parking facilities, for ex-
ample by adding extra parking racks in busier areas. However, the
clusters could also be further exploited by various systems such as
forecasting models. In addition, it may be interesting to apply this
approach to other traffic-related applications, such as car parking
or pedestrian crowds.
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Similar techniques have been widely used in many fields as
mentioned earlier [11, 25, 26, 29], but used scarcely in the analysis
of locations and their characteristics in relation to micromobility
parking. Our findings are in line with the conclusions of previous
research in that they also found that clustering has added value for
identifying locations with similar properties.

7.1.2 To what extent can regression modeling be used to predict the
parking occupancy of micromobility vehicles? In this study, three
machine learning methods, namely random forest, XGBoost and
multilayer perceptron, were used to predict the parking occupancy
of micromobility vehicles. Both tree-based models slightly out-
performed the MLP for all feature combinations. This might be
explained by their relative simplicity and their robustness to over-
fitting. It is also possible that random search has not found the most
optimal combination of hyperparameters. The difference between
the performance of the tree-based models was insignificant, with
the RF slightly outperforming the XGBoost. Based on those results,
it is suggested to further investigate the applicability of tree-based
models for parking occupancy prediction in future research.

In previous research, there is no consensus about which type
of model is more appropriate for predicting parking occupancy.
Both, tree-based ensemble and ANN models, have proven to deliver
promising results [3, 4, 8, 27]. In addition, several studies have used
parametric approaches such as ARIMA to make reliable predictions.
[9, 32].

Overall, the findings of the regression modeling gave a general
idea of how machine learning models can be used in predicting
parking occupancy of micromobility vehicles. However, due to
the small number of historical observations, the possibilities with
regard to the design of the forecasting models were very limited.
Considering that the models only provide one-year ahead forecasts,
the added value of these forecasts for managing micromobility
parking is rather small. Applications, such as planning accessible
routes, may require shorter-term forecasts.

7.1.3 What is the impact of the neighborhood characteristics and
cluster results on the performance of the regression models? To in-
vestigate the importance of neighborhood information and cluster
results, the regression models in this study were trained using differ-
ent sets of features. In addition, importance scores of the tree-based
models were used to confirm conclusions about the influence of
those features.

By including both geospatial and cluster features in the tree-
based models, the performance of the models improved compared
to using historical data alone. Although the improvement was only
about 4%, the characteristics have proven to be of some value in pre-
dicting parking occupancy. This could be confirmed by the compa-
rable performance delivered by the model only using the historical
parking counts and the model using the neighborhood and cluster
features. In general, the historical observations of a location were
found to be an essential factor when predicting parking occupancy.
However, including the exact historical counts led to overfitting
of the models. Removing this feature and only using the historical
data summarized in the cluster results has decreased overfitting.

The same conclusions were drawn when comparing the feature
importance scores of the RF models. For the model including all
features, the historical parking occupancy scored highest, while

neighborhood and cluster variables were less than half as important.
The importance scores of the features in the model without the
exact historical counts were generally higher. The most promising
characteristics were the land use variables and points of interest
such as retail and horeca. Those findings are consistent with the
results of the clustering part, where the same variables showed a
high discriminating value between the clusters.

The results of this study are largely in line with previous research,
where adding additional information also led to a performance
increase [4, 9, 31]. Those studies identified similar variables, such as
land use of offices [4] and public transport stations [9], as important
features. However, the performance improvement in other studies
was significantly greater than in this study. This may be explained
by the fact that the exact historical parking counts have made the
models susceptible to overfitting. Furthermore, a number of the
related studies were focused on the parking behavior of another
type of vehicle, such as cars, in which these factors may play a
greater role.

7.2 Limitations
One major limitation of this study was the scarcity of the data
related to its temporal component. Only a small amount of his-
torical data was available for each location, with a maximum of
four observations. As stated before, parking of (micromobility) ve-
hicles is a spatial-temporal issue, indicating that parking behavior
changes over time depending on the geospatial environment. Pre-
vious research has shown that time and time-related features, such
as weather and holidays, have a great value in predicting parking
occupancy [2, 3, 8, 9, 17]. With the dataset provided in this study, it
was not possible to exploit and analyze the influence of these key
factors. Consequently, this has limited the possibilities with regard
to the design and outcomes of this study.

To address this limitation and provide reliable results, more
historical data is needed. This data must cover at least the different
times of the day (morning, afternoon and evening), as well as the
different days of the week (weekday vs weekend) and months in a
year. Based on this information, different time-related factors can
be included in the analysis. In addition, more historical data offers
the possibility to use other forecasting models, such as ARIMA,
that require a minimum of 50 observations [13, 19].

Given the large number of locations in this dataset, it seems
unfeasible to perform the counts for the entire city. To tackle this
problem, it is possible to count only certain locations that represent
a group of similar locations in terms of their geospatial proper-
ties. For this, use can be made of the results obtained during the
clustering analysis. Another option for gathering the necessary
data is to use photos of sidewalk segments. Previous research has
demonstrated that those photos can be used to capture parking
data, including arrival and departure times and parking durations
[20].

8 CONCLUSION
Parking micromobility vehicles is becoming an increasing problem
in urban areas such as Amsterdam. A better understanding of micro-
mobility parking and the possibility to predict the demand is needed
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to improve the management of these facilities and ultimately pre-
vent obstruction of the public space by informally parked vehicles.
Previous research mainly focused on the parking of other means of
transportation, such as cars or vehicle sharing systems, introduc-
ing a lack of research and data related to micromobility parking.
In addition, most studies used historical data and calendar effects
only, ignoring the impact of other features, such as neighborhood
characteristics.

Therefore, this research aimed to use historical data on parkedmi-
cromobility vehicles to analyze and predict the parking occupancy
on the sidewalk. The parking data was enhanced with different
neighborhood properties and the findings of the cluster analysis.
Results showed that tree-based ensemble models such as random
forest and XGBoost are suitable for predicting parking occupancy.
In terms of predictive features, historical observations have been
found to be the most influential predictor. However, using the exact
historical counts led to overfitting. Including cluster results and
geospatial variables, such as land use and the presence of points of
interest, has further improved the predictions. Moreover, clustering
allowed summarizing multivariate information and identifying spa-
tial patterns in parking occupancy related to certain neighborhood
characteristics.

Despite some limitations, the present study has demonstrated
the potential of predictive modeling for micromobility parking and
the importance of considering geospatial features. Insights from
this research can be used by city officials to tackle bottlenecks in
the city and thus increase the accessibility of the public space.

Future research into predicting parking occupancy of micro-
mobility vehicles should focus on establishing a data collection
framework tailored to the goals of the desired application. With the
correct data, features such as calendar effects or weather conditions
can be included in the models. Those models may be able to deliver
more reliable predictions.
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