
Request for contributions

Standard for

Public Code

What public code is and how to implement it for:

Policy makers

Management

Designers and developers

P

M

D

Version 0.2.2

github.com/publiccodenet/standard

1

2

3

Authors

https://publiccode.net

The Foundation for Public Code

Arnout Schuijff

Ben Cerveny

Elena Findley-de Regt

Claus Mullie

Boris van Hoytema

Mirjam van Tiel

Eric Herman

Jan Ainali

Felix Faassen

Alba Roza

•

•

•

•

•

•

•

•

•

•

Amsterdam University of Applied Sciences (AUAS),

Faculty of Digital Media and Creative Industries, Lectorate

of Play & Civic Media

Martijn de Waal•

Gemeente Amsterdam

Tamas Erkelens

Mark van der Net

Maurits van der Schee

•

•

•

Code For NL

Johan Groenen

Edo Plantinga

•

•

https://niis.org

Nordic Institute for Interoperability Solutions (NIIS)

Petteri Kivimäki•

Individual contributors

Floris Deerenberg

Timo Slinger

Bert Spaan

David Barberi

•

•

•

•

4

https://publiccode.net
https://publiccode.net
https://publiccode.net
https://niis.org
https://niis.org
https://niis.org

Paul Keller

Sky Bristol

Marcus Klaas de Vries

Arnout Engelen

Ngô Ngọc Đức Huy

Mauko Quiroga

Charlotte Heikendorf

•

•

•

•

•

•

•

5

Table of Contents
4

8

16

18

22

24

26

30

34

36

38

42

46

48

50

54

56

60

62

64

66

70

74

76

80

84

Authors

Introduction

Readers guide

Glossary

Criteria

Code in the open

Bundle policy and source code

Create reusable and portable code

Welcome contributors

Make contributing easy

Maintain version control

Require review of contributions

Document codebase objectives

Document the code

Use plain English

Use open standards

Use continuous integration

Publish with an open license

Use a coherent style

Document codebase maturity

Contributing guide

Code of conduct

Governance

Version history

License

Contact

1.

2.

3.

4.

5.

i.

ii.

iii.

iv.

v.

vi.

vii.

viii.

ix.

x.

xi.

xii.

xiii.

xiv.

xv.

6.

7.

8.

9.

10.

11.

6

Introduction
The Standard for Public Code is a set of criteria that

supports public organizations in developing and

maintaining software and policy together.

Anyone developing software or policy for a public purpose

can use this standard to work towards higher quality

public services that are more cost effective, with less risk

and more control.

This introduction introduces the term public code, explains

why this is important, and introduces the process through

which software and policy code can become certified

public code.

Definition of public code

Public code is both computer source code (such as

software and algorithms) and public policy executed in a

public context, by humans or machines. Public code is

explicitly distinct from regular software because it operates

under fundamentally different circumstances and

expectations.

Why public code?

There are many reasons for why public code is relevant

now.

Software code == legal code

Software is public infrastructure.

In the 21st century, software can be considered vital public

infrastructure. It is increasingly not just the expression of

existing policy but the originator of new policy – for

example where algorithms decide which districts need

extra social services or policing.

Software mechanics, algorithms and data collection have

become key elements in the execution of public policies.

Computer code now executes policies that have been

8

codified in legal code through democratic procedures. Both

forms of code set conditions for society to function

according to democratically set public values, the latter

executed by humans, the former by machines. In other

words, software code has increasingly started to equal

legal code.

Software should therefore be subject to the principles of

democratic governance.

Traditional public software procurement

Current public software production methods have not

served public service delivery very well.

In the last decade, public organizations that purchased

complete software solutions have sometimes been

surprised to discover that they:

can’t change their software to reflect changing policy

or take advantage of new technology

don’t have access to their data as it’s locked into

proprietary systems

are asked to pay ever increasing license fees

•

•

•

Technological sovereignty and democratic accountability

Public institutions, civil servants and residents deserve

better.

We believe the software that runs our society can no

longer be a black box, controlled by outside companies

that keep the underlying logic on which their software

operates hidden in proprietary codebases. Instead,

governments and the people they serve need

technological sovereignty – allowing them to set and

control the functioning of public software, just like they are

able to set and control policy that is legally formulated in

laws. Citizens and civil society actors need this software to

be transparent and accountable.

The design of software as essential civic infrastructure

should honor digital citizens’ rights.

9

Designing truly public software

Public code is at the core of modern public institutions,

shapes the work of civil servants and affects the lives of

almost all residents.

Public software must therefore be:

transparent

accountable

understandable for its constituents

•

•

•

It must reflect the values of the society it serves, for

example by being inclusive and non-discriminatory.

Most proprietary software systems currently used by

public organizations do not meet these requirements.

Public code – software built to operate with and as public

infrastructure, along with the arrangements for its

production – does.

Values of public code

We consider public code to have these core values:

Inclusive

Usable

Open

Legible

Accountable

Accessible

Sustainable

•

•

•

•

•

•

•

How public code works

Public code is open source software meant for fulfilling the

essential role of public organizations. Through use, other

administrations contribute back to the software, so that its

development and maintenance become truly collaborative.

Being open unlocks many other things.

Local responsibility and democratic accountability are

ensured when a public organization implements and

maintains their own public code. By being open and with

a broader contributor base, the software is more secure – it

10

benefits from many eyes spotting potential flaws. Many

contributors share the maintenance work to keep it

functional and modern, which reduces future technical

debt. The shared workload is more sustainable now and in

the future. Its openness makes the code and its data more

easily adaptable in the future – it will be easier to retool,

repurpose or retire. This all results in lower risk public

infrastructure.

This pooling of resources lets public administrations give

extra attention to how to customize the software so it

works best in each local context - creating better user

experiences for their end users (residents or citizens).

Economics of public code

Public code offers a better economic model for public

organizations as well as for commercial companies. It’s an

alternative to traditional software procurement which

increases local control and economic opportunity.

Designed from the start to be open, adaptable and with

data portability, it can be developed by in-house staff or

trusted vendors. Because the code is open, the public

administration can change vendors if they need to. Open

code increases opportunities for public learning and

scrutiny, allowing the public administration to procure

smaller contracts – thereby making it easier for local small

and medium enterprises to bid. Public administrations can

use their own software purchasing to stimulate innovation

and competition in their local economy.

This can be seen as investment leading to future economic

growth – more vendors will be necessary due to growing

technology demand.

Procuring public code

Public code can be used and developed by permanent in-

house development teams, contractors or outsourced

suppliers. Vendors to public organizations can include

public code in their bids for contracts.

To use existing public code, you need to specify in your

budget and project design that your new solution will use

that codebase. To encourage an innovative approach to

11

adapting the public code to your context, you could

describe the service or outcome in your contract.

Standard compliance or certification process

The Foundation for Public Code ensures that codebases

under its stewardship (and not in incubation or the attic)

are compliant with the Standard for Public Code. This

makes clear to potential users and contributors that the

codebase is of high quality, and updates will be too.

The audit performed by the Foundation for Public Code is

meant to complement machine testing, as machines are

great at testing things like syntax and whether outcomes

align with expectations. Things meant for humans, such

as testing whether documentation is actually

understandable and accessible in context, the commit

messages make sense, and whether community guidelines

are being followed are impossible for machines to test.

The audit tests the entire codebase, including source code,

policy, documentation and conversation for compliance

with both the standards set out by the Foundation for

Public Code and the standards set out in the codebase

itself.

How the process works

https://about.publiccode.net/roles/

Every time a contribution is suggested to a codebase –

through for instance a merge request – the codebase

stewards of the Foundation for Public Code will audit the

contribution for compliance with the Standard for Public

Code. New contributions can only be adopted into the

codebase after they have been approved as compliant

with the Standard for Public Code, and have been

reviewed by another contributor.

The audit is presented as a review of the contribution. The

codebase steward gives line by line feedback and

compliance, helping the contributor to improve their

contribution. The merge request cannot be fulfilled until the

codebase stewards have approved the contribution.

12

https://about.publiccode.net/roles/
https://about.publiccode.net/roles/
https://about.publiccode.net/roles/
https://about.publiccode.net/roles/

M
er
ge
R
eq
ue
st
A
cc
ep
ta
nc
e

M
ai
nt
ai
ne
rs
(c
om
m
un
ity
or
st
af
f)

A
ud
ito
r
(s
ta
ff)

C
on
tr
ib
ut
or

Set request status
to 'approved' and
post positively

Set request status
to 'Changes
requested'

Post what needs
to be done so the
contributor can

make the changes

Check changes
for project

governance and
Public Code
compliance

Team member
assigns merge
request to

themselves within
2 business days

Set request status
to 'Changes
requested'

Merge request
rejected

Merge
Set request status
to 'approved' and
post positively

Post what needs
to be done so the
contributor can

make the changes

Post why the
request cannot be
merged and close

it

Check changes
for usefulness,
value added and
'mergeability'

Make new
commits to the
code to resolve
review and audit

issues

Contributor
submits a merge

request

Request updated
Merge request
to a 'protected
branch' or
Foundation For
Public Code
managed
codebase

Compliant

Not compliant

Can be merged

Needs changes

Cannot be
merged

Certifying an entire codebase versus a contribution

For the codebase to be completely certified every

meaningful line of code, and the commits behind the code,

need to meet the Standard.

If codebases have been completely audited from the first

merge request they can be immediately certified as

compliant with the Standard for Public Code.

If the audit process is added to an existing codebase, the

new merge requests can be certified, but the existing code

cannot be certified. By auditing every new merge request

the codebase can move incrementally towards being

completely certified.

The goals for the Standard for Public Code

This Standard supports developers, designers, business

management and policy makers to:

develop high quality software and policy for better

public service delivery

develop codebases that can be reused across

contexts and collaboratively maintained

•

•

13

reduce technical debt and project failure rate

have more granular control over, and ability to make

decisions about, their IT systems

improve vendor relationships with a better economic

model

•

•

•

https://publiccode.net/

The Foundation for Public Code helps public organizations

share and adopt open source software, build sustainable

developer communities and create a thriving ecosystem for

public code. It does this through codebase stewardship. For

this process the codebase stewards use the Standard for

Public Code to make sure the code it stewards is high

quality as well as collaboratively maintainable.

Potential users of codebases tested against the Standard

for Public Code can expect them to be highly reusable,

easily maintainable and of high quality.

The Standard for Public Code does this by:

setting out a common terminology for public code

development

establishing measures to help develop high quality

public code

providing guidance on how to fulfill its criteria and

operationalize compliance

•

•

•

The Standard for Public Code is meant to be time and

technology independent.

Who this is for

The Standard for Public Code is for the people who create

and reuse public code:

policy makers

business and project management

developers and designers

•

•

•

These people work at:

public organizations: institutions and administrations

consultancies and vendors of information technology

and policy services to public organizations

•

•

14

https://publiccode.net/
https://publiccode.net/
https://publiccode.net/

It is not aimed at public organizations’ end users (residents

or citizens), journalists or academics.

Further reading

https://download.fsfe.org/campaigns/pmpc/

PMPC-Modernising-with-Free-Software.pdf

“Modernising Public Infrastructure with Free Software”

whitepaper by the Free Software Foundation Europe.

•

Videos on public code

https://www.youtube.com/watch?

v=cnJtnZ9Cx1o

https://youtube.com/watch?v=QHFkD4xfd6c

Collaborative Code is the Future of Cities @

DecidimFest 2019. Talk by Ben Cerveny on the

background behind the Foundation for Public Code.

Public Money? Public Code! - Panel @ Nextcloud

Conference 2019. Touches on topics like procurement,

law and more.

•

•

Get involved

This standard is a living document. Read our contributor

guide to learn how you can make it better.

15

https://download.fsfe.org/campaigns/pmpc/PMPC-Modernising-with-Free-Software.pdf
https://download.fsfe.org/campaigns/pmpc/PMPC-Modernising-with-Free-Software.pdf
https://download.fsfe.org/campaigns/pmpc/PMPC-Modernising-with-Free-Software.pdf
https://download.fsfe.org/campaigns/pmpc/PMPC-Modernising-with-Free-Software.pdf
https://download.fsfe.org/campaigns/pmpc/PMPC-Modernising-with-Free-Software.pdf
https://www.youtube.com/watch?v=cnJtnZ9Cx1o
https://www.youtube.com/watch?v=cnJtnZ9Cx1o
https://www.youtube.com/watch?v=cnJtnZ9Cx1o
https://www.youtube.com/watch?v=cnJtnZ9Cx1o
https://www.youtube.com/watch?v=cnJtnZ9Cx1o
https://youtube.com/watch?v=QHFkD4xfd6c
https://youtube.com/watch?v=QHFkD4xfd6c
https://youtube.com/watch?v=QHFkD4xfd6c
https://youtube.com/watch?v=QHFkD4xfd6c
http://localhost:4000/CONTRIBUTING.html
http://localhost:4000/CONTRIBUTING.html

Readers guide
The Standard describes a number of criteria. All criteria

have consistent sections that make it clear how to create

great public code. Below is a brief explanation of each of

these sections and how they are used within the criteria of

the Standard.

Requirements

This section lists what needs to be done in order to comply

with the standard.

https://tools.ietf.org/html/rfc2119

In order to limit ambiguity, the key words “MUST”, “MUST

NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,

“SHOULD NOT”, “RECOMMENDED”, “MAY”, and

“OPTIONAL” in this document are to be interpreted as

described in IETF RFC 2119.

Why this is important

This section explains why it is important for the users and

contributors of this codebase that these requirements are

followed.

What this does not do

This section manages expectation by explaining what

following the requirements will not save you from.

This helps:

with applying the Standard correctly

make sure no unexpected things pop up

•

•

How to test

This section offers actions you can take to see if a

contribution is compliant with the Standard. This is key if

you want to operationalize the Standard.

16

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

We’ve tried to word it so that someone who is not

intimately acquainted with the subject matter can still do a

basic check for compliance.

Policy makers: what you need to doP

This section tries to specifically speak to policy makers by

offering them concrete actions they can perform in their

role.

Policy makers set the priorities and goals of projects and

may be less technologically experienced.

Management: what you need to doM

This section tries to specifically speak to management by

offering concrete actions they can perform in their role.

Management is responsible for on-time project delivery,

stakeholder management and continued delivery of the

service. For this they are wholly reliant on both the policy

makers as well as the developers and designers. They

need to create the right culture, line up the right resources

and provide the right structures to deliver great services.

Developers and designers: what you need to doD

This section tries to specifically speak to developers and

designers by offering them concrete actions they can

perform in their role.

Developers are usually more technically aligned and have

more impact on the delivery of services than the previous

groups.

17

Glossary

Code

Any explicitly described system of rules. This includes laws,

policy and ordinances, as well as source code that is used

to build software. Both of these are rules, some executed

by humans and others by machines.

Codebase

Any discrete package of code (both source and policy), the

tests and the documentation required to implement a

piece of policy or software.

This can be – for example – a document or a version-

control repository.

Continuous integration

In software engineering, continuous integration (CI) is the

practice of merging all developers’ working copies to a

development branch of a codebase as frequently as

reasonable.

Different contexts

Two contexts are different if they are different public

organizations or different departments for which there is

not one decision maker that could make collaboration

happen naturally.

General public

The public at large: end users of the code and the services

based upon it.

For example, a city’s residents are considered end users of

a city’s services and of all code that powers these services.

18

Open source

https://opensource.org/osd-annotated

Open source is defined by the Open Source Initiative in

their Open Source Definition.

Open standard

https://opensource.org/osr

An open standard is any standard that meets the Open

Source Initiative’s Open Standard Requirements.

Policy

A policy is a deliberate system of principles to guide

decisions and achieve rational outcomes. A policy is a

statement of intent, and is implemented as a procedure or

protocol. Policies are generally adopted by a governance

body within an organization. Policies can assist in both

subjective and objective decision making.

Public policy is the process by which governments

translate their political vision into programs and actions to

deliver outcomes.

At the national level, policy and legislation (the law) are

usually separate. The distinction is often more blurred in

local government.

In the Standard the word ‘policy’ refers to policy created

and adopted by public organizations such as governments

and municipalities.

Public code

Public code is both computer source code (such as

software and algorithms) and public policy executed in a

public context, by humans or machines.

Because public code serves the public interest, it should be

open, legible, accountable, accessible and sustainable.

By developing public code independently from but still

implementable in the local context for which it was

developed, as well as documenting the development

19

https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
https://opensource.org/osd-annotated
https://opensource.org/osr
https://opensource.org/osr
https://opensource.org/osr

process openly, public code can provide a building block for

others to:

re-implement in their local context

take as a starting point to continue development

use as a basis for learning

•

•

•

To facilitate re-use, public code should be either released

into the public domain or licensed with an open license

that permits others to view and reuse the work freely and

to produce derivative works.

Repository

In revision (or version) control systems, a repository is a

data structure which stores metadata for a set of files or

directory structure. (source: SVNBook)

Version control

Version control is the management of changes to source

code and the files associated with it. Changes are usually

identified by a code, termed the revision number (or

similar). Each revision is associated with the time it was

made and the person making the change thus making it

easier to retrace the evolution of the code. Revision control

systems can be used to compare different versions with

each other and to see how content has changed over

time.

20

21

Criteria
24

26

30

34

36

38

42

46

48

50

54

56

60

62

64

Code in the open

Bundle policy and source code

Create reusable and portable code

Welcome contributors

Make contributing easy

Maintain version control

Require review of contributions

Document codebase objectives

Document the code

Use plain English

Use open standards

Use continuous integration

Publish with an open license

Use a coherent style

Document codebase maturity

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

22

Code in the open

Requirements

All source code for any policy and software in use

(unless used for fraud detection) MUST be published

and publicly accessible.

Contributors MUST NOT upload sensitive information

regarding users, their organization or third parties to

the repository.

Any source code not currently in use (such as new

versions, proposals or older versions) SHOULD be

published.

The source code MAY provide the general public with

insight into which source code or policy underpins any

specific interaction they have with an organization.

•

•

•

•

Why this is important

Coding in the open:

improves transparency

increases code quality

facilitates the auditing processes

•

•

•

What this does not do

Make source code or policy reusable.

Make the codebase and the code within it

understandable to as many people as possible.

•

•

How to test

The source for any version currently in use is published on

the internet where it can be seen:

from outside the original contributing organization

without the need for any form of authentication or

authorization

•

•

24

For each commit, reviewers verify that content does not

include sensitive information such as configurations,

usernames or passwords, public keys or other real

credentials used in production systems.

Policy makers: what you need to doP

Develop policies in the open.

Prioritize open and transparent policies.

•

•

Management: what you need to doM

Develop a culture that embraces openness, learning

and feedback.

Collaborate with external vendors and freelancers by

working in the open.

•

•

Developers and designers: what you need to doD

Clearly split data and code, in order to meet the

requirement about sensitive information above.

•

Further reading

https://gds.blog.gov.uk/2012/10/12/coding-

in-the-open/

https://www.gov.uk/government/

publications/open-source-guidance/when-

code-should-be-open-or-closed

https://www.gov.uk/government/

publications/open-source-guidance/security-

considerations-when-coding-in-the-open

https://www.gov.uk/service-manual/

technology/deploying-software-regularly

https://gdstechnology.blog.gov.uk/

2014/01/27/how-we-use-github/

Coding in the open by the UK Government Digital

Service.

When code should be open or closed by the UK

Government Digital Service.

Security considerations when coding in the open by

the UK Government Digital Service.

Deploying software regularly by the UK Government

Digital Service.

How GDS uses GitHub by the UK Government Digital

Service.

•

•

•

•

•

25

https://gds.blog.gov.uk/2012/10/12/coding-in-the-open/
https://gds.blog.gov.uk/2012/10/12/coding-in-the-open/
https://gds.blog.gov.uk/2012/10/12/coding-in-the-open/
https://gds.blog.gov.uk/2012/10/12/coding-in-the-open/
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/when-code-should-be-open-or-closed
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/government/publications/open-source-guidance/security-considerations-when-coding-in-the-open
https://www.gov.uk/service-manual/technology/deploying-software-regularly
https://www.gov.uk/service-manual/technology/deploying-software-regularly
https://www.gov.uk/service-manual/technology/deploying-software-regularly
https://www.gov.uk/service-manual/technology/deploying-software-regularly
https://gdstechnology.blog.gov.uk/2014/01/27/how-we-use-github/
https://gdstechnology.blog.gov.uk/2014/01/27/how-we-use-github/
https://gdstechnology.blog.gov.uk/2014/01/27/how-we-use-github/
https://gdstechnology.blog.gov.uk/2014/01/27/how-we-use-github/

Bundle policy and

source code

Requirements

A codebase MUST include the policy that the source

code is based on.

A codebase MUST include all source code that the

policy is based on.

All policy and source code that the codebase is based

on MUST be documented, reusable and portable.

Policy SHOULD be provided in machine readable and

unambiguous formats.

Continuous integration tests SHOULD validate that

the source code and the policy are executed

coherently.

•

•

•

•

•

Why this is important

This makes sure access is guaranteed to both the source

code and the policy documents to facilitate effective reuse

of a codebase.

What this does not do

Guarantee that a codebase will reflect the bundled

policy.

Make sure packages comply with the local technical

infrastructure or legal framework of a given public

organization.

•

•

How to test

Policy is provided in machine readable and

unambiguous formats.

Continuous integration tests validate that the source

code and policy are executed coherently.

•

•

26

Policy makers: what you need to doP

https://en.wikipedia.org/wiki/

Business_Process_Model_and_Notation

https://www.omg.org/dmn/

https://www.omg.org/cmmn/

Collaborate with developers and designers to ensure

there is no mismatch between policy code and source

code.

Provide the relevant policy texts for inclusion in the

repository.

Provide references and links to texts which support

the policies.

Document policy in formats that are unambiguous

and machine readable such as Business Process

Model and Notation, Decision Model and Notation and

Case Management Model Notation.

Track policy with the same version control and

documentation used to track source code.

Check in regularly to understand how the non-policy

code in the codebase has changed and whether it still

matches the intentions of the policy.

•

•

•

•

•

•

Management: what you need to doM

Keep policy makers, developers and designers

involved and connected throughout the whole

development process.

Make sure policy makers, developers and designers

are working to the same objectives.

•

•

Developers and designers: what you need to doD

Become familiar with and be able to use the process

modelling notation that the policy makers in your

organization use.

Work together with policy makers to ensure there is no

mismatch between policy code and source code.

Give feedback on how to make policy documentation

more clear.

•

•

•

27

https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation
https://www.omg.org/dmn/
https://www.omg.org/dmn/
https://www.omg.org/dmn/
https://www.omg.org/cmmn/
https://www.omg.org/cmmn/
https://www.omg.org/cmmn/
http://localhost:4000/criteria/version-control-and-history.html
http://localhost:4000/criteria/document-objectives.html

Further reading

https://bpmn.io/

https://www.bpmnquickguide.com/view-

bpmn-quick-guide/

Free online tools for building BPMN, CMMN and DMN

diagrams at bmpn.io by Camunda.

BPMN Quick Guide by Trisotech.

•

•

28

https://bpmn.io/
https://bpmn.io/
https://bpmn.io/
https://bpmn.io/
https://www.bpmnquickguide.com/view-bpmn-quick-guide/
https://www.bpmnquickguide.com/view-bpmn-quick-guide/
https://www.bpmnquickguide.com/view-bpmn-quick-guide/
https://www.bpmnquickguide.com/view-bpmn-quick-guide/

29

Create reusable and

portable code

Requirements

https://github.com/publiccodeyml/

publiccode.yml

The codebase MUST be developed to be reusable in

different contexts.

The codebase MUST be independent from any secret,

undisclosed, proprietary or non-open licensed code or

services for execution and understanding.

The codebase SHOULD be in use by multiple parties.

The roadmap SHOULD be influenced by the needs of

multiple parties.

Configuration SHOULD be used to make code adapt

to context specific needs.

The codebase SHOULD include a machine readable

metadata description, for example in a publiccode.yml

file.

Code and its documentation SHOULD NOT contain

situation-specific information.

•

•

•

•

•

•

•

Why this is important

Enables other policy makers, developers and

designers to reuse what you’ve developed, to test it, to

improve it and contribute those improvements back

leading to better quality, cheaper maintainability and

higher reliability.

Makes the code easier for new people to understand

(as it’s more general).

Makes it easier to control the mission, vision and scope

of the codebase because the codebase is thoughtfully

and purposefully designed for reusability.

Codebases used by multiple parties are more likely to

benefit from a self-sustaining community.

A metadata description file increases discoverability.

•

•

•

•

•

30

https://github.com/publiccodeyml/publiccode.yml
https://github.com/publiccodeyml/publiccode.yml
https://github.com/publiccodeyml/publiccode.yml
https://github.com/publiccodeyml/publiccode.yml

Any contributor is able to test and contribute without

relying on the situation-specific infrastructure of any

other contributor or deployment.

•

What this does not do

Get others to reuse the codebase.

Build a community.

Shift responsibility for documentation, support, bug-

fixing, etc. to another party.

•

•

•

How to test

Ask someone in a similar role at another organization

if they could reuse the codebase and what that would

entail.

Codebase is in use by multiple parties or in multiple

contexts.

For each commit, reviewers verify that content does

not include situation-specific data such as hostnames,

personal and organizational data, or tokens and

passwords.

•

•

•

Policy makers: what you need to doP

Document your policy with enough clarity and detail

that it can be understood outside of its original

context.

Make sure your organization is listed as a known user

by the codebase.

•

•

Management: what you need to doM

Make sure that stakeholders and business owners

understand that reusability is an explicit goal of the

codebase as it reduces technical debt and provides

sustainability for it.

•

Developers and designers: what you need to doD

Source should be designed for reuse by other users

and organizations.

•

31

Source should be designed to solve a general problem

instead of a specific one.

Someone in a similar organization facing a similar

problem should be able to use your solution.

•

•

Further reading

https://www.gov.uk/service-manual/

technology/making-source-code-open-and-

reusable

Making source code open and reusable by the UK

Government Digital Service.

•

32

https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable
https://www.gov.uk/service-manual/technology/making-source-code-open-and-reusable

33

Welcome contributors

Requirements

The codebase MUST allow anyone to submit

suggestions for changes to the codebase.

The codebase MUST include contribution guidelines

explaining what kinds of contributions are welcome

and how contributors can get involved, for example in

a CONTRIBUTING file.

The codebase SHOULD advertise the committed

engagement of involved organizations in the

development and maintenance.

The codebase SHOULD document the governance of

the codebase, contributions and its community, for

example in a GOVERNANCE file.

The codebase SHOULD have a publicly available

roadmap.

The codebase MAY include a code of conduct for

contributors.

•

•

•

•

•

•

Why this is important

Helps newcomers understand and trust your

codebase community’s leadership.

Prevents the community that works on a codebase

splitting because there is no way to influence its goals

and progress – resulting in diverging communities.

Helps users decide to use one codebase over another.

•

•

•

What this does not do

Guarantee others will join the community.

Guarantee others will reuse the codebase.

•

•

How to test

It’s possible to submit suggestions for changes to the

codebase.

•

34

There are contribution guidelines.

Codebase governance is clearly explained, including

how to influence codebase governance.

•

•

Policy makers: what you need to doP

Add a list to the codebase of any other resources that

policy experts, non-governmental organizations and

academics would find useful for understanding or

reusing your policy.

Consider adding contact details so that other policy

makers considering reuse can ask you for advice.

•

•

Management: what you need to doM

Make sure the documentation explains how your

organization is involved in the codebase, what

resources it has available for it and for how long.

Support your experienced policy makers, developers

and designers to stay part of the community for as

long as possible.

•

•

Developers and designers: what you need to doD

Respond promptly to requests.

Keep your management informed of the time and

resources you require to support other contributors.

•

•

Further reading

https://opensource.guide/building-

community/

https://www.contributor-covenant.org/

version/1/4/code-of-conduct

https://opensource.guide/leadership-and-

governance/

http://hintjens.com/blog:117

Building welcoming communities by Open Source

Guides.

The Contributor Covenant is a model code of conduct.

Leadership and governance for growing open source

community projects, by Open Source Guides.

Building online communities by Pieter Hintjens (long

read!).

•

•

•

•

35

https://opensource.guide/building-community/
https://opensource.guide/building-community/
https://opensource.guide/building-community/
https://opensource.guide/building-community/
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://opensource.guide/leadership-and-governance/
https://opensource.guide/leadership-and-governance/
https://opensource.guide/leadership-and-governance/
https://opensource.guide/leadership-and-governance/
http://hintjens.com/blog:117
http://hintjens.com/blog:117
http://hintjens.com/blog:117

Make contributing easy

Requirements

The codebase MUST have a public issue tracker that

accepts suggestions from anyone.

The codebase MUST include instructions for how to

privately report security issues for responsible

disclosure.

The documentation MUST link to both the public issue

tracker and submitted codebase changes, for example

in a README file.

The codebase MUST have communication channels

for users and developers, for example email lists.

The documentation SHOULD include instructions for

how to report potentially security sensitive issues on a

closed channel.

•

•

•

•

•

Why this is important

Enables users to fix problems and add features to the

shared codebase leading to better, more reliable and

feature rich software.

Allows collaborative uptake of shared digital

infrastructure.

Helps users decide to use one codebase over another.

•

•

•

What this does not do

Guarantee others will reuse the codebase.•

How to test

There’s a public issue tracker.

It’s possible to participate in a discussion with other

users about the software.

•

•

36

Policy makers: what you need to doP

Track policy issues in the codebase, so that a relevant

external policy expert can volunteer help.

•

Management: what you need to doM

Track management issues in the codebase, so that

external managers with relevant experience can

volunteer help.

Support your experienced policy makers, developers

and designers to keep contributing to the codebase

for as long as possible.

•

•

Developers and designers: what you need to doD

Respond promptly to requests.

Keep your management informed of the time and

resources you require to support other contributors.

•

•

Further reading

https://www.netdata.cloud/blog/open-

source-contributions/

https://gds.blog.gov.uk/2017/09/04/the-

benefits-of-coding-in-the-open/

https://github.com/verdaccio/verdaccio/blob/

master/SECURITY.md

How to inspire exceptional contributions to your open-

source project

The benefits of coding in the open by the UK

Government Digital Service.

Verdaccio’s security policy is a really nice example.

•

•

•

37

https://www.netdata.cloud/blog/open-source-contributions/
https://www.netdata.cloud/blog/open-source-contributions/
https://www.netdata.cloud/blog/open-source-contributions/
https://www.netdata.cloud/blog/open-source-contributions/
https://www.netdata.cloud/blog/open-source-contributions/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://gds.blog.gov.uk/2017/09/04/the-benefits-of-coding-in-the-open/
https://github.com/verdaccio/verdaccio/blob/master/SECURITY.md
https://github.com/verdaccio/verdaccio/blob/master/SECURITY.md
https://github.com/verdaccio/verdaccio/blob/master/SECURITY.md
https://github.com/verdaccio/verdaccio/blob/master/SECURITY.md

Maintain version

control

Requirements

The community MUST have a way to maintain

version control for the code.

All files in a codebase MUST be version controlled.

All decisions MUST be documented in commit

messages.

Every commit message MUST link to discussions and

issues wherever possible.

The codebase SHOULD be maintained in a distributed

version control system.

Contributors SHOULD group relevant changes in

commits.

Maintainers SHOULD mark released versions of the

codebase, for example using revision tags or textual

labels.

Contributors SHOULD prefer file formats where the

changes within the files can be easily viewed and

understood in the version control system.

Contributors MAY sign their commits and provide an

email address, so that future contributors are able to

contact past contributors with questions about their

work.

•

•

•

•

•

•

•

•

•

Why this is important

Version control means keeping track of changes to the

code over time. This allows you to create structured

documentation of the history of the codebase. This is

essential for collaboration at scale.

Distributed version control enables you to:

have a full copy of the code and its history•

38

revert to an earlier version of the codebase whenever

you want to

record your changes and the reasons why you made

them, to help future developers understand the

process

compare two different versions

work on changes in parallel as a team before merging

them together

continue to work when the network is unavailable,

merging changes back with everyone else’s at a later

date

•

•

•

•

•

What this does not do

Substitute for advertising maturity.

Guarantee the code executes correctly.

Guarantee collaborators.

•

•

•

How to test

The codebase is kept in version control using software

such as Git.

All commit messages explain:

why the change was made,

what the discussion about the change was or

where to find it (with a URL).

It is possible to access a specific version of the

codebase, for example through a revision tag or a

textual label.

•

•

◦

◦

•

Policy makers: what you need to doP

If a new version of the codebase is created because of

a policy change, make sure it’s clear in the

documentation:

what the policy change is,

how it’s changed the codebase.

•

◦

◦

For example, adding a new category of applicant to a

codebase that manages granting permits would be

considered a policy change.

39

http://localhost:4000/criteria/document-maturity.html

Management: what you need to doM

Support policy makers, developers and designers to

be clear about what improvements they’re making to

the codebase - making improvements isn’t a public

relations risk.

•

Developers and designers: what you need to doD

Write clear commit messages so that it is easy to

understand why the commit was made.

Mark different versions so that it is easy to access a

specific version, for example using revision tags or

textual labels.

Write clear commit messages so that versions can be

usefully compared.

Work with policy makers to describe how the source

code was updated after a policy change.

•

•

•

•

Further reading

https://producingoss.com/en/vc.html#vc-

vocabulary

https://www.gov.uk/service-manual/

technology/maintaining-version-control-in-

coding

https://lab.github.com/

https://education.github.com/git-cheat-

sheet-education.pdf

Producing OSS: Version Control Vocabulary by Karl

Fogel.

Maintaining version control in coding by the UK

Government Digital Service.

GitHub Learning Lab for learning how to use GitHub

or refresh your skills.

Git Cheat Sheet a list with the most common used git

commands.

•

•

•

•

40

https://producingoss.com/en/vc.html#vc-vocabulary
https://producingoss.com/en/vc.html#vc-vocabulary
https://producingoss.com/en/vc.html#vc-vocabulary
https://producingoss.com/en/vc.html#vc-vocabulary
https://www.gov.uk/service-manual/technology/maintaining-version-control-in-coding
https://www.gov.uk/service-manual/technology/maintaining-version-control-in-coding
https://www.gov.uk/service-manual/technology/maintaining-version-control-in-coding
https://www.gov.uk/service-manual/technology/maintaining-version-control-in-coding
https://www.gov.uk/service-manual/technology/maintaining-version-control-in-coding
https://lab.github.com/
https://lab.github.com/
https://lab.github.com/
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf
https://education.github.com/git-cheat-sheet-education.pdf

41

Require review of

contributions

Requirements

All contributions that are accepted or committed to

release versions of the codebase MUST be reviewed

by another contributor.

Reviews MUST include source, policy, tests and

documentation.

Reviewers MUST provide feedback on all decisions to

not accept a contribution.

Contributions SHOULD conform to the standards,

architecture and decisions set out in the codebase in

order to pass review.

Reviews SHOULD include running both the code and

the tests of the codebase.

Contributions SHOULD be reviewed by someone in a

different context than the contributor.

Version control systems SHOULD not accept non-

reviewed contributions in release versions.

Reviews SHOULD happen within two business days.

Reviews MAY be performed by multiple reviewers.

•

•

•

•

•

•

•

•

•

Why this is important

Increases codebase quality.

Reduces security risks as well as operational risks.

Creates a culture of making every contribution great.

Catches the most obvious mistakes that could

happen.

Gives contributors the security that their contributions

are only accepted if they really add value.

Assures contributors of a guaranteed time for

feedback or collaborative improvement.

•

•

•

•

•

•

42

What this does not do

Guarantee the right solution to a problem.

Mean that reviewers are liable.

Absolve a contributor from writing documentation and

tests.

Provide you with the right reviewers.

•

•

•

•

How to test

Every commit in the history has been reviewed by a

different contributor in a different context.

•

Policy makers: what you need to doP

Institute a ‘four eyes’ policy where everything, not just

code, is reviewed.

Use a version control system or methodology that

enables review and feedback.

•

•

Management: what you need to doM

Make delivering great code a shared objective.

Make sure writing and reviewing contributions to

source, policy, documentation and tests are considered

equally valuable.

Create a culture where all contributions are welcome

and everyone is empowered to review them.

Make sure no contributor is ever alone in contributing

to a codebase.

•

•

•

•

Developers and designers: what you need to doD

Ask other contributors on the codebase to review your

work, in your organization or outside of it.

Try to respond to others’ requests for code review

promptly, initially providing feedback about the

concept of the change.

•

•

43

Further reading

https://gds-way.cloudapps.digital/manuals/

code-review-guidelines.html#content

https://help.github.com/en/articles/about-

protected-branches

https://about.gitlab.com/2014/11/26/

keeping-your-code-protected/

https://sage.thesharps.us/2014/09/01/the-

gentle-art-of-patch-review/

How to review code the GDS way by the UK

Government Digital Service.

Branch protection on GitHub and GitLab.

The Gentle Art of Patch Review

•

•

•

44

https://gds-way.cloudapps.digital/manuals/code-review-guidelines.html#content
https://gds-way.cloudapps.digital/manuals/code-review-guidelines.html#content
https://gds-way.cloudapps.digital/manuals/code-review-guidelines.html#content
https://gds-way.cloudapps.digital/manuals/code-review-guidelines.html#content
https://help.github.com/en/articles/about-protected-branches
https://about.gitlab.com/2014/11/26/keeping-your-code-protected/
https://help.github.com/en/articles/about-protected-branches
https://help.github.com/en/articles/about-protected-branches
https://help.github.com/en/articles/about-protected-branches
https://about.gitlab.com/2014/11/26/keeping-your-code-protected/
https://about.gitlab.com/2014/11/26/keeping-your-code-protected/
https://about.gitlab.com/2014/11/26/keeping-your-code-protected/
https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/
https://sage.thesharps.us/2014/09/01/the-gentle-art-of-patch-review/

45

Document codebase

objectives

Requirements

The codebase MUST contain documentation of its

objectives – like a mission and goal statement – that is

understandable by designers and developers so that

they can use or contribute to the codebase.

Codebase documentation SHOULD clearly describe

the connections between policy objectives and

codebase objectives.

The codebase MAY contain documentation of its

objectives for the general public.

•

•

•

Why this is important

Documenting codebase objectives:

provides an easy way for people to decide whether

this codebase is interesting for them now or in the

future.

helps scope your own development.

clearly communicates to other stakeholders and

contributors what the codebase is for.

•

•

•

What this does not do

Guarantee that the codebase achieves the stated

objective(s).

Guarantee contributions to the codebase.

Prevent other codebases from attempting to achieve

the same objectives.

•

•

•

46

How to test

There is an entry for the codebase objectives, mission or

goal in the codebase documentation.

Policy makers: what you need to doP

Add the policy objectives to the codebase

documentation, for example in the README .

Include relevant policies which impact the community,

codebase, and development like value and ethics

based policies, for example accessibility or equal

opportunity.

•

•

Management: what you need to doM

Add the organizational and business objectives to the

codebase documentation, for example in the README .

•

Developers and designers: what you need to doD

Add the technology and design objectives to the

codebase documentation, for example in the README .

•

Further reading

http://grouper.ieee.org/groups/802/3/RTPGE/

public/may12/hajduczenia_01_0512.pdf

How to write project objectives by Marek Hajduczenia.•

47

http://grouper.ieee.org/groups/802/3/RTPGE/public/may12/hajduczenia_01_0512.pdf
http://grouper.ieee.org/groups/802/3/RTPGE/public/may12/hajduczenia_01_0512.pdf
http://grouper.ieee.org/groups/802/3/RTPGE/public/may12/hajduczenia_01_0512.pdf
http://grouper.ieee.org/groups/802/3/RTPGE/public/may12/hajduczenia_01_0512.pdf

Document the code

Requirements

All of the functionality of the codebase – policy as well

as source – MUST be described in language clearly

understandable for those that understand the

purpose of the code.

The documentation of the codebase MUST contain:

a description of how to install and run the source

code,

examples demonstrating the key functionality.

The documentation of the codebase SHOULD contain:

a high level description that is clearly

understandable for a wide audience of

stakeholders, like the general public and

journalists,

a section describing how to install and run a

standalone version of the source code, including, if

necessary, a test dataset,

examples for all functionality.

There SHOULD be continuous integration tests for the

quality of the documentation.

The documentation of the codebase MAY contain

examples that make users want to immediately start

using the codebase.

The code MAY be tested by using examples in the

documentation.

•

•

◦

◦

•

◦

◦

◦

•

•

•

Why this is important

Users can start using and contributing more quickly.

You help people discover the codebase, especially

people asking ‘is there already code that does

something like this’.

This provides transparency into your organization and

processes.

•

•

•

48

What this does not do

Contribute directly to more reusable, portable code

(see Create reusable and portable code).

•

How to test

Other stakeholders, professionals from other public

organizations and the general public find the

documentation clear and understandable.

Documentation is generated from code.

Links and images are automatically tested.

•

•

•

Policy makers: what you need to doP

Check in regularly to understand how the non-policy

code in the codebase has changed.

Give feedback on how to make non-policy

documentation more clear.

•

•

Management: what you need to doM

Try to use the codebase.

Make sure you understand both the policy and source

code as well as the documentation.

•

•

Developers and designers: what you need to doD

Check in regularly to understand how the non-source

code in the codebase has changed.

Give feedback on how to make non-source

documentation more clear.

•

•

Further reading

https://www.writethedocs.org/guide/

Documentation guide by Write the Docs.•

49

http://localhost:4000/criteria/reusable-and-portable-codebases.html
https://www.writethedocs.org/guide/
https://www.writethedocs.org/guide/
https://www.writethedocs.org/guide/

Use plain English

Requirements

https://www.w3.org/WAI/WCAG21/

quickref/?showtechniques=315#readable

All codebase documentation MUST be in English.

All code MUST be in English, except where policy is

machine interpreted as code.

Any translation MUST be up to date with the English

version and vice versa.

There SHOULD be no acronyms, abbreviations, puns

or legal/non-English/domain specific terms in the

codebase without an explanation preceding it or a link

to an explanation.

The name of the codebase SHOULD be descriptive

and free from acronyms, abbreviations, puns or

organizational branding.

Documentation SHOULD aim for a lower secondary

education reading level, as recommended by the Web

Content Accessibility Guidelines 2.

Any code, documentation and tests MAY have a

translation.

•

•

•

•

•

•

•

Why this is important

https://ec.europa.eu/digital-single-market/

en/web-accessibility

Makes the codebase and what it does

understandable for a wider variety of stakeholders in

multiple contexts.

Helps with the discoverability of the codebase.

Can help you meet the European Union accessibility

directive, which requires most public sector information

to be accessible.

•

•

•

What this does not do

Make explanations of the codebase’s functionality

understandable.

Make your organization’s jargon understandable

without an explanation.

•

•

50

https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=315#readable
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=315#readable
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=315#readable
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=315#readable
https://www.w3.org/WAI/WCAG21/quickref/?showtechniques=315#readable
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://ec.europa.eu/digital-single-market/en/web-accessibility

How to test

https://www.grammarly.com/

https://hemingwayapp.com/

Check that translations and the English version have

the same content.

Validate that no unexplained acronyms,

abbreviations, puns or legal/domain specific terms are

in the documentation.

Test the documentation for grammar using

Grammarly.

Test the documentation for readability using

Hemingway text editor.

Ask someone outside of your context if they

understand your content (for example, a developer

working on a different codebase).

•

•

•

•

•

Policy makers: what you need to doP

Frequently test with other management, designers

and developers in the process if they understand

what you are delivering and how you document it.

•

Management: what you need to doM

Try to limit the use of acronyms, abbreviations, puns or

legal/domain specific terms in internal communications

in and between teams and stakeholders.

Be critical of documentation and descriptions in

proposals and changes - if you don’t understand

something, others will probably also struggle with it.

•

•

Developers and designers: what you need to doD

Frequently test with policy makers and management

if they understand what you are delivering and how

you document it.

•

Further reading

https://www.w3.org/TR/WCAG21/

#readable

Text of the Web Content Accessibilty Guidelines 2.1,

Guideline 3.1 Readable - make text content readable

and understandable.

•

51

https://www.grammarly.com/
https://www.grammarly.com/
https://www.grammarly.com/
https://hemingwayapp.com/
https://hemingwayapp.com/
https://hemingwayapp.com/
https://www.w3.org/TR/WCAG21/#readable
https://www.w3.org/TR/WCAG21/#readable
https://www.w3.org/TR/WCAG21/#readable
https://www.w3.org/TR/WCAG21/#readable
https://www.w3.org/TR/WCAG21/#readable

https://splasho.com/upgoer5/

https://www.plainlanguage.gov/about/

definitions/

Upgoer 5 text editor - only allows 1000 most common

words.

Definition of plain language by United States General

Services Administration.

•

•

52

https://splasho.com/upgoer5/
https://splasho.com/upgoer5/
https://splasho.com/upgoer5/
https://www.plainlanguage.gov/about/definitions/
https://www.plainlanguage.gov/about/definitions/
https://www.plainlanguage.gov/about/definitions/
https://www.plainlanguage.gov/about/definitions/

53

Use open standards

Requirements

https://opensource.org/osr

For features of a codebase that facilitate the

exchange of data the codebase MUST use an open

standard that meets the Open Source Initiative Open

Standard Requirements.

If no existing open standard is available, effort

SHOULD be put into developing one.

Standards that are machine testable SHOULD be

preferred over those that are not.

Functionality using features from a standard that is

not an open standard MAY be provided if necessary,

but only in addition to compliant features.

All non-compliant standards used MUST be recorded

clearly in the documentation.

The codebase SHOULD contain a list of all the

standards used with links to where they are available.

•

•

•

•

•

•

Why this is important

Creates interoperability between systems.

Reduces possible vendor lock-in.

Guarantees access to the knowledge required to reuse

and contribute to the codebase.

•

•

•

What this does not do

Make it understandable how to use the software.•

How to test

The documentation includes a list of the standards.

The standards used for all features that offer

interoperability with other components and systems

are freely and publicly available on the internet.

•

•

54

https://opensource.org/osr
https://opensource.org/osr
https://opensource.org/osr
https://opensource.org/osr

Policy makers: what you need to doP

Mandate use of open standards everywhere possible.

Prohibit procurement of technology that does not use

open standards.

•

•

Management: what you need to doM

Consider including open standard compliance

assessment in code reviews.

•

Developers and designers: what you need to doD

Add continuous integration tests for compliance with

the standards.

•

Further reading

https://www.gov.uk/government/

publications/open-standards-principles/

open-standards-principles

Open Standards principles, policy paper of the UK

Cabinet Office.

•

55

https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles
https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles

Use continuous

integration

Requirements

All functionality in the source code MUST have

automated tests.

Contributions MUST pass all automated tests before

they are admitted into the codebase.

Contributions MUST be small.

The codebase MUST have active contributors.

Source code test and documentation coverage

SHOULD be monitored.

Policy and documentation MAY have testing for

consistency with the source and vice versa.

Policy and documentation MAY have testing for style

and broken links.

•

•

•

•

•

•

•

Why this is important

Using continuous integration:

allows you to quickly identify problems with the

codebase,

enables risk taking and focusing on problem

solving while minimizing stress for the

contributors,

lowers barriers for new contributors by reducing

the amount of understanding necessary to

suggest changes,

leads to more maintainable code,

speeds up the development cycle.

Smaller, more regular contributions are typically easier

to evaluate and lower risk compared to large

infrequent changes.

Codebases in active development more reliably

provide opportunities for collaboration and feedback.

•

◦

◦

◦

◦

◦

•

•

56

What this does not do

Create a fault tolerant infrastructure that will work

and scale perfectly.

Create meaningful tests.

Test for real life situations.

Guarantee the code will deliver exactly the same

policy result.

•

•

•

•

How to test

There are tests present.

Code coverage tools check whether coverage is at

100% of the code.

Contributions are only admitted into the codebase

after all of the tests are passed.

Everyone working on the codebase integrates their

work at least once a day.

There are contributions from within the last three

months.

•

•

•

•

•

Policy makers: what you need to doP

Involve management as well as developers and

designers as early in the process as possible and keep

them engaged throughout development of your policy.

Make sure there are also automated tests set up for

policy documentation.

Fix policy documentation promptly if it fails a test.

Make sure the code reflects any changes to the policy

(see Maintain version control).

•

•

•

•

Management: what you need to doM

Make sure to test with real end users as quickly and

often as possible.

Procure consultancy services that deliver small parts

very often instead of large parts less frequently.

After a large failure, encourage publication of incident

reports and public discussion of what was learned.

•

•

•

57

http://localhost:4000/criteria/version-control-and-history.html

Developers and designers: what you need to doD

Help management and policy makers test their

contributions, by for example testing their

contributions for broken links or style.

Structure code written to handle conditions which are

difficult to create in a test environment in such a way

that the conditions can be simulated during testing.

Forms of resource exhaustion such as running out of

storage space and memory allocation failure are

typical examples of difficult to create conditions.

Tune the test code coverage tools to avoid false

alarms resulting from inlining or other optimizations.

Deploy often.

•

•

•

•

Further reading

https://www.martinfowler.com/articles/

continuousIntegration.html

https://www.continuousdelivery.com/

https://gds-way.cloudapps.digital/standards/

continuous-delivery.html

https://www.gov.uk/service-manual/

technology/quality-assurance-testing-your-

service-regularly

What is continuous integration by Martin Fowler.

What is continuous delivery by Jez Humble.

Use continuous delivery by the UK Government Digital

Service.

Quality assurance: testing your service regularly by the

Government Digital Service (United Kingdom).

•

•

•

•

58

https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.continuousdelivery.com/
https://www.continuousdelivery.com/
https://www.continuousdelivery.com/
https://gds-way.cloudapps.digital/standards/continuous-delivery.html
https://gds-way.cloudapps.digital/standards/continuous-delivery.html
https://gds-way.cloudapps.digital/standards/continuous-delivery.html
https://gds-way.cloudapps.digital/standards/continuous-delivery.html
https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly
https://www.gov.uk/service-manual/technology/quality-assurance-testing-your-service-regularly

59

Publish with an open

license

Requirements

https://opensource.org/licenses/category

All code and documentation MUST be licensed such

that it may be freely reusable, changeable and

redistributable.

Software source code MUST be licensed under an

OSI-approved open source license.

All code MUST be published with a license file.

Contributors MUST NOT be required to transfer

copyright of their contributions to the codebase.

All source code files in the codebase SHOULD include

a copyright notice and a license header that are

machine readable.

Codebases MAY have multiple licenses for different

types of code and documentation.

•

•

•

•

•

•

Why this is important

Makes it possible for anyone to see the code and

know that they can and how they can reuse it.

•

What this does not do

Prevent use of the code by any specific actors.•

How to test

https://opensource.org/licenses/category

https://opendefinition.org/licenses/

There is at least 1 license file present in the codebase,

usually called license .

The license for the source code is on the OSI-approved

Open Source license list and the license for

documentation is conformant to the Open Definition.

•

•

60

https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opensource.org/licenses/category
https://opendefinition.org/licenses/
https://opendefinition.org/licenses/
https://opendefinition.org/licenses/

https://github.com/licensee/licenseehttps://reuse.software/

Check for machine-readable licenses with tools like

Licensee or REUSE.

•

Policy makers: what you need to doP

Develop policy that requires code to be open source.

Develop policy that disincentivizes non-open source

code and technology in procurement.

•

•

Management: what you need to doM

https://creativecommons.org/licenses/

Only work with open source vendors that deliver their

code by publishing it under an open source license.

Beware that even though Creative Commons licenses

are great for documentation, licenses that stipulate

Non-Commercial or No Derivatives are NOT freely

reusable, changeable and redistributable and don’t

fulfill these requirements.

•

•

Developers and designers: what you need to doD

Add a new license file to every new codebase

created.

Add a copyright notice and a license header to every

new source code file created.

•

•

Further reading

https://opensource.org/osd

https://creativecommons.org/about/videos/

creative-commons-kiwi

https://reuse.software/spec/

https://spdx.org/licenses/

Open source definition by the Open Source Initiative -

all open source licenses meet this definition.

Animated video introduction to Creative Commons by

Creative Commons Aotearoa New Zealand.

REUSE Initiative specification for unambiguous,

human-readable and machine-readable copyright

and licensing information.

SPDX License List with standardized, machine-

readable abbreviations for most licenses.

•

•

•

•

61

https://github.com/licensee/licensee
https://github.com/licensee/licensee
https://github.com/licensee/licensee
https://reuse.software/
https://reuse.software/
https://reuse.software/
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://opensource.org/osd
https://opensource.org/osd
https://opensource.org/osd
https://creativecommons.org/about/videos/creative-commons-kiwi
https://creativecommons.org/about/videos/creative-commons-kiwi
https://creativecommons.org/about/videos/creative-commons-kiwi
https://creativecommons.org/about/videos/creative-commons-kiwi
https://reuse.software/spec/
https://reuse.software/spec/
https://reuse.software/spec/
https://spdx.org/licenses/
https://spdx.org/licenses/
https://spdx.org/licenses/

Use a coherent style

Requirements

Contributions MUST adhere to either a coding or

writing style guide, either the codebase community’s

own or an existing one that is advertised in or part of

the codebase.

Contributions SHOULD pass automated tests on style.

The codebase SHOULD include inline comments and

documentation for non-trivial sections.

The style guide MAY include sections on understanda

ble English.

•

•

•

•

Why this is important

Enables contributors in different environments to work

together on a unified product.

Unifying vocabularies reduces friction in

communication between contributors.

•

•

What this does not do

Help contributors write well or effectively explain what

they do.

•

How to test

Inspect whether contributions are in line with the style

guides specified in the documentation.

•

Policy makers: what you need to doP

Create, follow and continually improve on a style

guide for policy and documentation as well as

document this in the codebase, for example in the CO

NTRIBUTING or README .

•

62

http://localhost:4000/criteria/understandable-english-first.html
http://localhost:4000/criteria/understandable-english-first.html

Management: what you need to doM

Include written language, source, test and policy

standards in your organizational definition of quality.

•

Developers and designers: what you need to doD

If the codebase does not already have engineering

guidelines or other contributor guidance, start by adding

documentation to the repository describing whatever is

being done now, for example in the CONTRIBUTING or READ

ME . An important purpose of the file is to communicate

design preferences, naming conventions, and other

aspects machines can’t easily check. Guidance should

include what would be expected from code contributions in

order for them to be merged by the maintainers, including

source, tests and documentation. Continually improve upon

and expand this documentation as you go with the aim of

evolving this documentation into engineering guidelines.

Additionally:

Use a linter.

Add linter configurations to the codebase.

•

•

Further reading

https://github.com/caramelomartins/

awesome-linters

https://en.wikipedia.org/wiki/

Programming_style

List of linters by Hugo Martins.

Programming style on Wikipedia.

•

•

63

https://github.com/caramelomartins/awesome-linters
https://github.com/caramelomartins/awesome-linters
https://github.com/caramelomartins/awesome-linters
https://github.com/caramelomartins/awesome-linters
https://en.wikipedia.org/wiki/Programming_style
https://en.wikipedia.org/wiki/Programming_style
https://en.wikipedia.org/wiki/Programming_style
https://en.wikipedia.org/wiki/Programming_style

Document codebase

maturity

Requirements

A codebase MUST be versioned.

A codebase that is ready to use MUST only depend

on other codebases that are also ready to use.

A codebase that is not yet ready to use MUST have

one of these labels:

prototype - to test the look and feel, and to

internally prove the concept of the technical

possibilities,

alpha - to do guided tests with a limited set of

users,

beta - to open up testing to a larger section of the

general public, for example to test if the codebase

works at scale,

pre-release version - code that is ready to be

released but hasn’t received formal approval yet.

A codebase SHOULD contain a log of changes from

version to version, for example in the CHANGELOG .

•

•

•

◦

◦

◦

◦

•

Why this is important

Clearly signalling a codebase’s maturity helps others

decide whether to reuse, invest in or contribute to it.

What this does not do

Guarantee that others will use the code.•

How to test

The codebase has a strategy for versioning which is

documented.

It is clear where to get the newest version.

•

•

64

The codebase doesn’t depend on any codebases

marked with a less mature status.

•

Policy makers: what you need to doP

When developing policy, understand that any code

developed needs to be tested and improved before it

can be put into service.

Consider versioning policy changes, especially when

they trigger new versions of the source code.

•

•

Management: what you need to doM

Make sure that services only rely on codebases of

equal or greater maturity than the service. For

example, don’t use a beta codebase in a production

service or a prototype codebase in a beta service.

•

Developers and designers: what you need to doD

https://git-scm.com/docs/git-describe

Add a prominent header to every interface that

indicates the maturity level of the code.

Version all releases.

Especially in ‘rolling release’ scenarios, the version may

be automatically derived from the version control

system metadata (for example by using git describe).

•

•

•

Further reading

https://guides.service.gov.au/topics/service-

design-delivery-process/

https://www.gov.uk/service-manual/agile-

delivery

https://semver.org/

https://www.youtube.com/watch?

v=_cyI7DMhgYc

Service Design and Delivery Process by the Australian

Digital Transformation Agency.

Service Manual on Agile Delivery by the UK

Government Digital Service.

Semantic Versioning Specification used by many

codebases to label versions.

What are the Discovery, Alpha, Beta and Live stages

in developing a service? [Video 0’0”59] by the UK

Government Digital Service.

•

•

•

•

65

https://git-scm.com/docs/git-describe
https://git-scm.com/docs/git-describe
https://git-scm.com/docs/git-describe
https://guides.service.gov.au/topics/service-design-delivery-process/
https://guides.service.gov.au/topics/service-design-delivery-process/
https://guides.service.gov.au/topics/service-design-delivery-process/
https://guides.service.gov.au/topics/service-design-delivery-process/
https://www.gov.uk/service-manual/agile-delivery
https://www.gov.uk/service-manual/agile-delivery
https://www.gov.uk/service-manual/agile-delivery
https://www.gov.uk/service-manual/agile-delivery
https://semver.org/
https://semver.org/
https://semver.org/
https://www.youtube.com/watch?v=_cyI7DMhgYc
https://www.youtube.com/watch?v=_cyI7DMhgYc
https://www.youtube.com/watch?v=_cyI7DMhgYc
https://www.youtube.com/watch?v=_cyI7DMhgYc
https://www.youtube.com/watch?v=_cyI7DMhgYc

Contributing to this

standard
 Thank you for contributing!

We understand that a standard like this can only be set in

collaboration with as many public technologists, policy

makers and interested folk as possible. Thus we

appreciate your input, enjoy feedback and welcome

improvements to this project and are very open to

collaboration.

We love issues and pull requests from everyone. If you’re

not comfortable with GitHub, you can email use your

feedback at info@publiccode.net.

Problems, suggestions and questions in issues

https://help.github.com/articles/creating-an-

issue/

https://github.com/publiccodenet/standard/

issues

https://lists.publiccode.net/mailman/

postorius/lists/standard.lists.publiccode.net/

Please help development by reporting problems,

suggesting changes and asking questions. To do this, you

can create a GitHub issue for this project in the GitHub

Issues for the Standard for Public Code. Or, sign up to the

mailing list and send an email to standard@lists.publiccod

e.net.

You don’t need to change any of our code or

documentation to be a contributor!

Documentation and code in pull requests

If you want to add to the documentation or code of one of

our projects you should make a pull request.

https://guides.github.com/introduction/flow/

https://lab.github.com/

If you never used GitHub, get up to speed with

Understanding the GitHub flow or follow one of the great

free interactive courses in the GitHub learning lab on

working with GitHub and working with MarkDown, the

syntax this project’s documentation is in.

66

mailto:info@publiccode.net
https://help.github.com/articles/creating-an-issue/
https://github.com/publiccodenet/standard/issues
https://help.github.com/articles/creating-an-issue/
https://help.github.com/articles/creating-an-issue/
https://help.github.com/articles/creating-an-issue/
https://github.com/publiccodenet/standard/issues
https://github.com/publiccodenet/standard/issues
https://github.com/publiccodenet/standard/issues
https://github.com/publiccodenet/standard/issues
https://lists.publiccode.net/mailman/postorius/lists/standard.lists.publiccode.net/
https://lists.publiccode.net/mailman/postorius/lists/standard.lists.publiccode.net/
https://lists.publiccode.net/mailman/postorius/lists/standard.lists.publiccode.net/
https://lists.publiccode.net/mailman/postorius/lists/standard.lists.publiccode.net/
mailto:standard@lists.publiccode.net
mailto:standard@lists.publiccode.net
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://guides.github.com/introduction/flow/
https://lab.github.com/
https://lab.github.com/
https://lab.github.com/

This project is licensed CC-0, which essentially means that

the project, along with your contributions is in the public

domain in whatever jurisdiction possible, and everyone

can do whatever they want with it.

1. Make your changes

https://nvie.com/posts/a-successful-git-

branching-model/

This project uses the GitFlow branching model and

workflow. When you’ve forked this repository, please make

sure to create a feature branch following the GitFlow

model.

https://robots.thoughtbot.com/5-useful-tips-

for-a-better-commit-message

Add your changes in commits with a message that

explains them. Document choices or decisions you make in

the commit message, this will enable everyone to be

informed of your choices in the future.

If you are adding code, make sure you’ve added and

updated the relevant documentation and tests before you

submit your pull request. Make sure to write tests that

show the behavior of the newly added or changed code.

2. Pull request

When submitting the pull request, please accompany it

with a description of the problem you are trying to solve

and the issue numbers that this pull request fixes.

3. Improve

All contributions have to be reviewed by someone.

It could be that your contribution can be merged

immediately by a maintainer. However, usually, a new pull

request needs some improvements before it can be

merged. Other contributors (or helper robots) might have

feedback. If this is the case the reviewing maintainer will

help you improve your documentation and code.

If your documentation and code have passed human

review, it is merged.

4. Celebrate

Your ideas, documentation and code have become an

integral part of this project. You are the open source hero

we need!

67

http://localhost:4000/LICENSE.html
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message
https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message

In fact, feel free to open a pull request to add your name to

the AUTHORS file and get eternal attribution.

For more information on how to use and contribute to this

project, please read the README .

68

http://localhost:4000/AUTHORS.html
http://localhost:4000/AUTHORS.html
http://localhost:4000/README.html
http://localhost:4000/README.html

Contributor Covenant

Code of Conduct

Our pledge

In the interest of fostering an open and welcoming

environment, we as contributors and maintainers pledge

to making participation in our project and our community a

harassment-free experience for everyone, regardless of

age, body size, disability, ethnicity, gender identity and

expression, level of experience, education, socio-economic

status, nationality, personal appearance, race, religion, or

sexual identity and orientation.

Our standards

Examples of behavior that contributes to creating a

positive environment include:

Using welcoming and inclusive language

Being respectful of differing viewpoints and

experiences

Gracefully accepting constructive criticism

Focusing on what is best for the community

Showing empathy towards other community

members

•

•

•

•

•

Examples of unacceptable behavior by participants

include:

The use of sexualized language or imagery and

unwelcome sexual attention or advances

Trolling, insulting/derogatory comments, and personal

or political attacks

Public or private harassment

Publishing others’ private information, such as a

physical or electronic address, without explicit

permission

•

•

•

•

70

Other conduct which could reasonably be considered

inappropriate in a professional setting

•

Our responsibilities

Project maintainers are responsible for clarifying the

standards of acceptable behavior and are expected to

take appropriate and fair corrective action in response to

any instances of unacceptable behavior.

Project maintainers have the right and responsibility to

remove, edit, or reject comments, commits, code, wiki edits,

issues, and other contributions that are not aligned to this

Code of Conduct, or to ban temporarily or permanently

any contributor for other behaviors that they deem

inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces

and in public spaces when an individual is representing

the project or its community. Examples of representing a

project or community include using an official project e-mail

address, posting via an official social media account, or

acting as an appointed representative at an online or

offline event. Representation of a project may be further

defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise

unacceptable behavior may be reported by contacting the

project team at directors@publiccode.net. All complaints

will be reviewed and investigated and will result in a

response that is deemed necessary and appropriate to the

circumstances. The project team is obligated to maintain

confidentiality with regard to the reporter of an incident.

Further details of specific enforcement policies may be

posted separately.

Project maintainers who do not follow or enforce the Code

of Conduct in good faith may face temporary or

permanent repercussions as determined by other

members of the project’s leadership.

71

Attribution

https://www.contributor-covenant.org

This Code of Conduct is adapted from the Contributor

Covenant, version 1.4, available at https://

www.contributor-covenant.org/version/1/4/code-of-

conduct.html

72

https://www.contributor-covenant.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org
https://www.contributor-covenant.org

Governance

https://publiccode.net/

This standard lies at the core of the codebase stewardship

provided by the Foundation for Public Code. We decide if a

codebase is ready for community co-development based

on this document.

The standard is maintained by Foundation for Public Code

staff.

We welcome contributions – such as suggestions for

changes or general feedback – from anyone.

Because of the important role that the Standard for Public

Code has in our core process we require the highest

standards from the Standard.

We will try to respond promptly to all pull requests. The pull

request is an opportunity to work together to improve our

methods and the Standard. We may not accept all

changes, but we will explain our logic.

74

https://publiccode.net/
https://publiccode.net/
https://publiccode.net/
http://localhost:4000/CONTRIBUTING.html
http://localhost:4000/CONTRIBUTING.html

Version history

Version 0.2.2

November 29th 2021: 🏛 the eighth draft recognizes that

policy which executes as code may not be in English.

Document exception to “All code MUST be in English”

where policy is interpreted as code.

Add MAY requirement regarding committer email

addresses in Maintain version control.

Expand guidance to Policy Makers in Bundle policy

and code.

Expand guidance to Developers and designers in Use

a coherent style.

Add “Different contexts” to glossary.

Add Mauko Quiroga and Charlotte Heikendorf to

AUTHORS.

Add Digital Public Goods approval badge.

Added “next” and “previous” links to criteria pages of

web version.

Add Open Standards principles to further reading.

Add Definition of plain language to further reading.

Move the Semantic Versioning Specification further

reading reference.

Clarify that publiccode.yml is one example of a

machine readable metadata description.

Changed “your codebase” and “your organization” to

be less possessive.

Made additional minor changes to text for clarity.

Add instructions for creating a print version.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

76

Version 0.2.1

March 1st 2021: the seventh draft has minor cleaning

up after version 0.2.0.

New SHOULD requirement on using a distributed

version control system and why distributed is

important.

Feedback requirements for rejected contributions are

more strict than accepted ones.

Specify that copyright and license notices should also

be machine readable.

Advice on how to test that notices be machine

readable.

Clarify guidance for rolling releases.

Clear up definition of version control in glossary.

Add further reading encouraging contribution, SPDX,

Git and reviewing contributions.

Add links to videos about the concept of public code.

Update BPMN link.

Reduce link duplication.

Add Alba Roza and Ngô Ngọc Đức Huy to authors.

Made additional minor changes to text for clarity.

•

•

•

•

•

•

•

•

•

•

•

•

Version 0.2.0

October 26th 2020: the sixth draft splits a requirement

and adds clarity.

Split “Welcome contributions” criterion into “Make

contributing easy” and “Welcome contributors”.

Rename criterion “Pay attention to codebase

maturity” to “Document codebase maturity”.

Changed MUST to SHOULD for requirement of

codebase in use by multiple parties.

Add MUST NOT requirement regarding copyright

assignment.

Clarify role of configuration in reusable code

requirement.

Glossary additions: continuous integration, policy,

repository, and version control.

•

•

•

•

•

•

77

Replace references to ‘cities’ with ‘public

organizations’.

Clarify aspects of sensitive code by separating

contributor and reviewer requirements into separate

items.

Expand further reading, and guidance to policy

makers, developers and designers.

Add Felix Faassen and Arnout Engelen to authors.

Made additional minor changes to text for clarity.

•

•

•

•

•

Version 0.1.4

November 27th 2019: the fifth draft consists mostly of

additional minor fixes.

Linked License.md file.

Add Sky Bristol, Marcus Klaas de Vries, and Jan Ainali

to authors.

Made punctuation more consistent, especially for

bullet lists.

Made some minor changes to text for clarity.

•

•

•

•

Version 0.1.3

October 8th 2019: the fourth draft only patches and

fixes minor things for the autumn cleaning

Renamed continuous delivery to continuous

integration.

Referencing accessibility guidelines in the language

standard.

A bunch of style and consistency fixes.

•

•

•

Version 0.1.2

August 22th 2019: the third draft focuses on better text

and takes community input

With some great new contributors comes a fresh

author list.

All links are now HTTPS.

•

•

78

General proofreading, wording clarifications, and

smashed typos.

Updated criteria:

Requirement for reuse in different contexts

Recommendation for explicit versioning

Recommendation for multi party development

Recommendation for license headers in files

Recommendation for vulnerability reporting

Recommendation for explicit documentation of

governance

•

•

◦

◦

◦

◦

◦

◦

Version 0.1.1

May 9th 2019: the second draft fixes a few basic

oversights and fixes a lot of typos

Removed references to the Foundation for Public

Code, we’re going to have to change the name in

becoming an association.

Updated the introduction.

Updated the glossary.

Added the code of conduct.

We’ve recommended using the publiccode.yml

standard for easier reuse.

•

•

•

•

•

Version 0.1.0

April 16th 2019: the first draft is ready, it is all brand

new and has snazzy new ideas in it

14 criteria with their requirements and how to

operationalize them.

An introduction with a high level background, what

this standard is, and how the Foundation for Public

Code will use it.

•

•

https://smartcities.publiccode.net/

This first version was produced together with the

Amsterdam University of Applied Sciences and the City of

Amsterdam as a part of the Smart Cities? Public Code!

project.

79

https://smartcities.publiccode.net/
https://smartcities.publiccode.net/
https://smartcities.publiccode.net/
https://smartcities.publiccode.net/

This license is the legal contract that allows anyone to do

anything they like with the content in this entire document.

CC0 1.0 Universal

Statement of purpose

The laws of most jurisdictions throughout the world

automatically confer exclusive Copyright and Related

Rights (defined below) upon the creator and subsequent

owner(s) (each and all, an “owner”) of an original work of

authorship and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those

rights to a Work for the purpose of contributing to a

commons of creative, cultural and scientific works

(“Commons”) that the public can reliably and without fear

of later claims of infringement build upon, modify,

incorporate in other works, reuse and redistribute as freely

as possible in any form whatsoever and for any purposes,

including without limitation commercial purposes. These

owners may contribute to the Commons to promote the

ideal of a free culture and the further production of

creative, cultural and scientific works, or to gain reputation

or greater distribution for their Work in part through the

use and efforts of others.

For these and/or other purposes and motivations, and

without any expectation of additional consideration or

compensation, the person associating CC0 with a Work

(the “Affirmer”), to the extent that he or she is an owner of

Copyright and Related Rights in the Work, voluntarily

elects to apply CC0 to the Work and publicly distribute the

Work under its terms, with knowledge of his or her

Copyright and Related Rights in the Work and the

meaning and intended legal effect of CC0 on those rights.

Copyright and Related Rights. A Work made available

under CC0 may be protected by copyright and related

or neighboring rights (“Copyright and Related

1.

80

Rights”). Copyright and Related Rights include, but

are not limited to, the following:

the right to reproduce, adapt, distribute, perform,

display, communicate, and translate a Work;

moral rights retained by the original author(s)

and/or performer(s);

publicity and privacy rights pertaining to a

person’s image or likeness depicted in a Work;

rights protecting against unfair competition in

regards to a Work, subject to the limitations in

paragraph 4(a), below;

rights protecting the extraction, dissemination, use

and reuse of data in a Work;

database rights (such as those arising under

Directive 96/9/EC of the European Parliament and

of the Council of 11 March 1996 on the legal

protection of databases, and under any national

implementation thereof, including any amended

or successor version of such directive); and

other similar, equivalent or corresponding rights

throughout the world based on applicable law or

treaty, and any national implementations thereof.

Waiver. To the greatest extent permitted by, but not in

contravention of, applicable law, Affirmer hereby

overtly, fully, permanently, irrevocably and

unconditionally waives, abandons, and surrenders all

of Affirmer’s Copyright and Related Rights and

associated claims and causes of action, whether now

known or unknown (including existing as well as

future claims and causes of action), in the Work (i) in

all territories worldwide, (ii) for the maximum duration

provided by applicable law or treaty (including future

time extensions), (iii) in any current or future medium

and for any number of copies, and (iv) for any

purpose whatsoever, including without limitation

commercial, advertising or promotional purposes (the

“Waiver”). Affirmer makes the Waiver for the benefit

of each member of the public at large and to the

detriment of Affirmer’s heirs and successors, fully

intending that such Waiver shall not be subject to

revocation, rescission, cancellation, termination, or any

other legal or equitable action to disrupt the quiet

enjoyment of the Work by the public as contemplated

by Affirmer’s express Statement of Purpose.

i.

ii.

iii.

iv.

v.

vi.

vii.

2.

81

Public License Fallback. Should any part of the Waiver

for any reason be judged legally invalid or ineffective

under applicable law, then the Waiver shall be

preserved to the maximum extent permitted taking

into account Affirmer’s express Statement of Purpose.

In addition, to the extent the Waiver is so judged

Affirmer hereby grants to each affected person a

royalty-free, non transferable, non sublicensable, non

exclusive, irrevocable and unconditional license to

exercise Affirmer’s Copyright and Related Rights in

the Work (i) in all territories worldwide, (ii) for the

maximum duration provided by applicable law or

treaty (including future time extensions), (iii) in any

current or future medium and for any number of

copies, and (iv) for any purpose whatsoever, including

without limitation commercial, advertising or

promotional purposes (the “License”). The License

shall be deemed effective as of the date CC0 was

applied by Affirmer to the Work. Should any part of

the License for any reason be judged legally invalid or

ineffective under applicable law, such partial invalidity

or ineffectiveness shall not invalidate the remainder of

the License, and in such case Affirmer hereby affirms

that he or she will not (i) exercise any of his or her

remaining Copyright and Related Rights in the Work

or (ii) assert any associated claims and causes of

action with respect to the Work, in either case

contrary to Affirmer’s express Statement of Purpose.

Limitations and Disclaimers.

No trademark or patent rights held by Affirmer

are waived, abandoned, surrendered, licensed or

otherwise affected by this document.

Affirmer offers the Work as-is and makes no

representations or warranties of any kind

concerning the Work, express, implied, statutory

or otherwise, including without limitation

warranties of title, merchantability, fitness for a

particular purpose, non infringement, or the

absence of latent or other defects, accuracy, or

the present or absence of errors, whether or not

discoverable, all to the greatest extent permissible

under applicable law.

Affirmer disclaims responsibility for clearing rights

of other persons that may apply to the Work or

3.

4.

i.

ii.

iii.

82

any use thereof, including without limitation any

person’s Copyright and Related Rights in the

Work. Further, Affirmer disclaims responsibility for

obtaining any necessary consents, permissions or

other rights required for any use of the Work. d.

Affirmer understands and acknowledges that

Creative Commons is not a party to this

document and has no duty or obligation with

respect to this CC0 or use of the Work.

https://creativecommons.org/publicdomain/

zero/1.0/

For more information, please see https://

creativecommons.org/publicdomain/zero/1.0/

83

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

Contact

https://publiccode.net

For questions and more information about the Foundation

for Public Code you can find us at our website, email us at

info@publiccode.net, or call us at +31 20 2 444 500

84

https://publiccode.net
https://publiccode.net
https://publiccode.net

	Standard for Public Code
	Authors
	Table of Contents
	Introduction
	Definition of public code
	Why public code?
	Software code == legal code
	Traditional public software procurement
	Technological sovereignty and democratic accountability
	Designing truly public software
	Values of public code

	How public code works
	Economics of public code
	Procuring public code

	Standard compliance or certification process
	How the process works
	Certifying an entire codebase versus a contribution

	The goals for the Standard for Public Code
	Who this is for

	Further reading
	Videos on public code

	Get involved

	Readers guide
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do

	Glossary
	Code
	Codebase
	Continuous integration
	Different contexts
	General public
	Open source
	Open standard
	Policy
	Public code
	Repository
	Version control

	Criteria
	Code in the open
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Bundle policy and source code
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Create reusable and portable code
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Welcome contributors
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Make contributing easy
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Maintain version control
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Require review of contributions
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Document codebase objectives
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Document the code
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Use plain English
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Use open standards
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Use continuous integration
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Publish with an open license
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Use a coherent style
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Document codebase maturity
	Requirements
	Why this is important
	What this does not do
	How to test
	Policy makers: what you need to do
	Management: what you need to do
	Developers and designers: what you need to do
	Further reading

	Contributing to this standard
	Problems, suggestions and questions in issues
	Documentation and code in pull requests
	1. Make your changes
	2. Pull request
	3. Improve
	4. Celebrate

	Contributor Covenant Code of Conduct
	Our pledge
	Our standards
	Our responsibilities
	Scope
	Enforcement
	Attribution

	Governance
	Version history
	Version 0.2.2
	Version 0.2.1
	Version 0.2.0
	Version 0.1.4
	Version 0.1.3
	Version 0.1.2
	Version 0.1.1
	Version 0.1.0

	CC0 1.0 Universal
	Statement of purpose

	Contact

