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Summary

Artificial Intelligence technologies are increasingly embedded into 
our daily lives. The City of Amsterdam is no exception, with work 
processes being progressively supported by automated systems 
and data-driven decisions, leading to efficiency gains and im-
proved service delivery. However, working with AI systems also 
poses a risk, as they have the potential to propagate harmful 
patterns on a large scale through the presence of undesired 
biases. These biases are often caused by the model using sensitive 
information obtained from datasets, such as a person’s age or 
gender, to base its decisions on. The biases can lead to a model 
discriminating against individuals or minority groups, resulting in 
undesired outcomes such as being withheld access to services.

In this handbook, we delve into all things related to fairness, biases 
and how to minimize potential harms caused by AI systems. We 
provide you with an A-Z manual to measure how fair your model is 
and to mitigate the biases you encounter. 

Fairness is a broad concept that can be analysed from multiple 
angles, which we will briefly discuss in Chapters 1 and 2. To then 
inspire you to reason more deeply about the potential impact of 
your AI system, we discuss which harmful effects a model can 
cause to individuals and groups of people in Chapter 3. 

After these general introductory topics, we introduce you to the 
Fairness Pipeline in Chapter 4, which is the foundation of our 
Fairness Handbook. The pipeline consists of a series of mitigation 

techniques, actions and good practices throughout the model 
development cycle to find, mitigate and prevent harmful traps and 
biases. We use both technical and non-technical solutions and 
focus on enhancing transparency and understandability of ML 
models, as understandability is often key for preventing discrimi-
nating effects by algorithms. 

In Chapter 5, we dive into the various definitions and metrics of 
fairness that can be used during the bias analysis for evaluating 
whether and how the model perpetuates discriminatory effects  
on individuals and groups. The bias analysis, a significant part  
of the Fairness Pipeline, starts by envisioning which groups might 
be negatively impacted by the AI system and which harms could 
be perpetuated by the model. Using this information, we select 
the appropriate fairness definition and associated metrics with help  
of the Fairness tree. The adopted fairness metric then compares 
the model’s performance across demographic the groups in the 
dataset to find out for which groups the model is underperforming 
and/or discriminating against. 

Lastly, for those who want to learn more about the types of biases 
and traps that may occur in Machine Learning (ML) models, or the 
mitigation algorithms that can be used in the Fairness Pipeline, 
the Appendix provides a wealth of information and useful sources. 
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1. Introduction

The decisions and outcomes from Machine Learning models have 
an impact on individuals and groups of people in the real world: 
they can speed up complex processes, such as finding waste on 
the streets or allocating social benefits, but their impact can also 
be harmful, potentially leading to the discrimination against 
individuals and vulnerable groups. In the model development 
cycle, we make a series of small, often implicit decisions that affect 
the scale and scope of these impacts.

To mitigate the harmful risks of AI systems, the City of Amsterdam 
uses a variety of measures that increase the transparency, under-
standability and fairness of the algorithms we construct. By making 
models more transparent and explainable, we can understand how 
the model arrived at its decisions and evaluate whether these 
decisions are based on correct assumptions, which enhances the 
overall trustworthiness of our AI systems. To make algorithms 
fairer, the City collaborates with internal and external parties, 
conducts the Artificial Intelligence Impact Assessment and is 
continuously further developing the bias analysis to prevent 
discriminating behaviour by algorithms. 

However, making algorithms fair is a challenging task, as defining 
what a fair model always depends on the context in which the 
model is developed and deployed. Therefore, we need deeper 
insight into how algorithmic biases can seep in at every stage 
of the model development cycle and how they eventually harm 
vulnerable groups and individuals, so that we can use effective 
mitigation techniques to combat these problems. 

In this fairness handbook, we are particularly focusing on embed-
ding fairness measures in the development cycle of AI systems. 
We do this by walking you through the most common problems 
that introduce harmful biases in algorithms, after which we discuss 
strategies to find, mitigate and prevent these undesired effects. 
Our findings are summarized in our Fairness Pipeline that guides 
you towards developing fair models. Note that, although our 
scope is Machine Learning models, a lot of information is also 
directly applicable to other types of models as well.

With this Fairness handbook, we hope to minimize the presence 
of any harmful impact of the AI system on citizens.
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Learning Objectives
At the end of this handbook, you will have insight in:
•   What algorithmic fairness and bias entails;
•   How to choose the appropriate definition and metric of fairness 

for your model;
•   The harms that AI systems can perpetuate;
•   The most common biases and how they can be found;
•   Bias prevention and mitigation techniques;
•   Which high-quality sources can be consulted for further 

research.

Note that not all sections of the chapters might be of interest 
for stakeholders without a technical background. We indicate 
these sections with the following symbol:

We need deeper insight 
into how algorithmic biases 
can seep in at every stage 
of the model development 
cycle and how they 
eventually harm vulnerable 
groups and individuals.
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2. What is Algorithmic Fairness? 

Algorithmic Fairness is the field which studies how algorithmic 
systems should behave to treat people fairly, that is, without 
discrimination on the grounds of protected sensitive character-
istics such as age, gender, disability, ethnic or racial origin, 
religion or belief, or sexual orientation (Weerts, 2021a). As pre-
diction-based decision-making systems are increasingly applied 
by a variety of industries and governments, the question of how 
to ensure their fairness is becoming more relevant every day 

To understand algorithmic fairness, we must first understand 
algorithms. An algorithm is simply a set of (detailed) instructions 
for solving a problem, or accomplishing a task. This handbook 
relates specifically to algorithms used for decision-making.  
The basis of these decision-making systems is learning and 
generalizing from historic data. 

The algorithm development lifecycle is a series of human choices 
and practices leading to the development of an algorithm (also 
known as model or AI system). This cycle includes formulating 
the target variable, collecting and processing the data, evaluating 
the model’s performance and finally deploying and integrating 
the model in the work processes of the organization. These 
choices have the potential to introduce bias in AI systems, 
which are skewed outcomes based on sensitive characteristics 
such as age or gender, that lead to discrimination. This discrimi-
nation can take the form of disproportionately assigning undesired 
outcomes to underrepresented groups in the dataset, such as 

Protected Attributes 
(Dutch & EU Law)
• Migration Background
• Nationality
• Race
• Ethnicity
• Country of Birth
• Gender
• Sex
• Sexual Orientation
• Religion
• Age
• Pregnancy
• Civil Status
• Socioeconomic Class
• Income
• Skin Colour
• Language
• Political Views
• Health
• Disability status
• Biometrics

Figure 1: The protected attributes on which it 
is highly undesired or prohibited to discrimi-
nate against
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classifying higher fraud risk scores to them. The same algorithm 
may also favour the overrepresented group of persons by assign-
ing desi rable outcomes to them, leading the fraud prediction 
model to incorrectly assign them lower fraud risk scores. 

The main source of bias lies in the data on which the model is 
trained. The dataset can reflect human decisions or second-or-
der effects of societal or historical inequities (Silberg & Manyika, 
2019). During the model training phase, the ML (Machine Learn-
ing) model will pick up these flawed patterns and its output will 
reflect existing prejudices, inequalities and stereotypes (Barocas et 
al., 2016). And as ML models are deployed on an increasingly large 
scale, they will not only reflect but also systematize and amplify 
structural prejudices and inequalities.

It is important to note that algorithmic fairness is a multidiscipli-
nary field, which combines data science with sociology, economics, 
philosophy and other disciplines. The roots of bias are found in 
the real-world, where patterns found within existing datasets 
reflect historic demographic and socio-economic disparities 
between people. To develop fair algorithms, we therefore cannot 
simply rely on technical solutions. Instead, we must gain addition-
al insight in the socio-technical environment in which the AI 
system is built and deployed. Thus, finding bias in an AI system 
requires effort from a wide range of stakeholders.

Is the data a good 
representation 
of reality? 

Does our problem 
formulation ref lect 
the real-world context 
and our (moral) values?

Does our problem 
formulation ref lect 
the real-world context 
and our (moral) values?

Does the system 
produce fair outcomes?

Does the model 
make fair predictions?

Problem
Formulation

Make 
Decisions

Impact

The Real World

The Modeled World

Collect 
Data

Train
model

Make
predictionsTraining

Data
Model Predictions

Figure 2: Fairness issues often arise due to 
mismatches between our goals and what 
we actually value. Source: Hilde Weerts
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Direct versus Indirect Bias
A commonly asked question about fairness is: why don’t we just 
remove the sensitive features from the dataset to prevent the 
model from basing its decisions on this sensitive information? 
Unfortunately, removing a sensitive feature often does not remove 
the skewed outcomes, as the model might still be discriminating 
against vulnerable groups through proxy features. These are 
seemingly innocent features, such as zip code or income level, 
which indirectly link to sensitive attributes such as gender or race. 
The decision outcomes generated by such models may dispropor-
tionately hurt people from disadvantaged groups such as women 
or people with a disability, who have a history of structural discrim-
ination and other injustice. Thus, even when the dataset does not 
explicitly contain any sensitive features, it may still treat groups 
or individuals unfavourably based on proxies. 

In our bias analysis, we focus on the prevention and mitigation of 
both direct and indirect bias. In practice, it is often the indirect bias 
that is challenging to find and mitigate, as it can manifest itself 
through neutral features of which it is difficult to see how they link 
to sensitive information. 

Finding forms of indirect bias is therefore a complex quest during 
the bias analysis, which requires a deep understanding of the 
socio-technical context of the AI system. Try to map out in which 
ways each feature of the dataset can potentially link to sensitive 
information or harmful patterns from the real world, as this insight 
helps with finding indirect bias. 

Socio-Technical Context
The socio-technical refers to the 
environment surrounding a technical 
system, including both social and 
technical aspects. This environment 
shapes who might benefit or is harmed 
by AI systems (Fairlearn, n.d.).

Social Aspects:
• People; 
• Institutions;
• Regulations;
• Political environment;
• Employee-management relations;
• Communities.

Technical aspects:
• Algorithms;
• Model infrastructure;
• Data;
• Industry standards.

Figure 3: Important topics of the socio-technical 
context.

Box: School Admission Model
A model for a prestigious school admission programme in 
Britain selects qualified applicants based on a variety of 
indicators. The model consists of four indicators:
• Grade point average
• Extracurricular activities
• Nationality
• Zip code

However, during the first year the model is used, hardly any 
applicants with nationalities other than British are selected. 
As the model is trained on historical data from a time where 
the school wasn’t accessible for non-natives, applicants with 
a foreign nationality aren’t selected by the model. Hence, 
by including nationality as a feature, we can observe direct 
bias: the model uses a sensitive feature directly to generate 
less favourable outcomes for individuals or groups of people. 

After discovering that the admission model discriminated 
against underrepresented groups, the programme administra-
tor decides to take out the “nationality” feature.
However, the results remain the same: hardly any applicants 
with a foreign nationality are accepted. The reason is that zip 
code is closely related to nationality. Thus, the model is still 
indirectly biased towards the nationality of applicants. 
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Admission Admission

Grade Point 
Average

Extracurriculars Nationality

Direct Bias

Extracurriculars

Nationality

Indirect Bias

Zip CodeZip Code
Grade Point 

Average

direct bias

indire
ct b

ias

Chapter Takeaways 
•  Fairness in Artificial Intelligence relates to AI systems that do 

not discriminate against individuals or groups of people based 
on protected attributes such as socio-economic status, nation-
ality or age. 

•  Biases cause AI systems to become unfair and discriminative. 
These biases can occur directly due to the presence of sensitive 
features, or indirectly, through proxy variables that link to 
sensitive features.

Finding bias in an 
AI system requires
effort from a wide 

range of stakeholders.
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3. Harmful Effects of AI Systems 

There are several ways in which AI systems can negatively impact 
individuals, groups of people or society at large. If we understand 
the type of harm a particular AI system may cause, we can 
assess what fairness entails in the applied context and deter-
mine our main goals for the bias analysis. 

This chapter discusses six types of harms caused by AI systems, 
which are:
•  allocation harm;
•  quality-of-service harm; 
•  representation harm; 
•  denigration harm; 
•  stereotyping harm;
•  and procedural harm. 

These harms illustrate how problems within AI systems can lead to 
model outcomes that treat individuals or groups of people 
unfavourably. They are not mutually exclusive – a single AI system 
might inflict multiple types of harms that reinforce one another. As 
this field is in its infancy however, it is important to explore if your 
AI system may bring about other harms not listed here.

Allocation harm
Allocation harm occurs when a system unfairly distributes or 
withholds various groups an opportunity, resource, or information 
(Swee Kiat, n.d.). In other words, the AI systems can decide to 
either give or deny something to an individual or a group. This 

type of harm primarily takes place in models used for 
allocating a scarce resource, such as allocating loans, jobs, 
insurance and aid during disasters. This harm can range 
from small but significant difference in treatment, to 
complete denial of a service (Wu et al., 2020). 

An example of allocation harm is a hiring model that 
systematically hires more men than women, even if they 
share similar resumes. If the model was trained on 
historical data containing patterns of more men working 
at the company, the model is likely to learn that men are 
more suitable for the job than women. 

The source of the data can also introduce allocation harm. 
In a model used for assessing disaster damage and 
sending appro priate relief resources, social media data is 
often used as data source. However, the model will only 
represent people with internet access, thereby excluding 
elderly people or regions with limited communication 
infrastructure from receiving relief resour ces (Saleiro et al., 
2020). 
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Quality-of-Service harm
An AI system might not service one group of people as well it does 
another (Madaio et al., 2020). A model containing quality-of-ser-
vice harm produces substantially more misclassifications and errors 
for some groups when compared to others. 

The risk for this type of harm is particularly high (Weerts, 2021) when:
•  The relationship between the features and the target 

variable is different across groups. 
For example, a model used for recruiting new personnel more 
often rejects older applicants when compared to younger 
applicants, even when they are both equally suitable for the 
vacancy. This harm might be caused by ML developers prioritiz-
ing certain features over others, such as weighing features 
related to recent education higher than features about the 
years of work experience;

•  There is not enough data available about (some of) the 
vulnerable groups. 
For example, quality-of-service harm can occur when a voice 
recognition system is trained primarily on male voices and fails 
to recognize the spoken instructions for women.
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Representation harm
Representation harm occurs when a system overrepresents or 
underrepresents certain groups of people (based on sensitive 
attributes such as gender, socio-economic class or sexual orienta-
tion). As AI systems shape how people see the world, if these 
groups are not proportionally represented in the datasets used 
to train them, the outcomes will be biased to reflects this skewed 
view (Swee Kiat, n.d.). 

For example, in a study on facial recognition systems conducted 
by Bualomwini and Gebru (2018), an image research on “CEO” 
revealed that only 11 percent of the top image results showed 
women, whereas women were 27 percent of US CEOs at that time 
(Buolamwini & Gebru, 2018; Silberg & Manyika, 2019)

Representation harm can be the source of other types of harms, 
as the underrepresentation of minority groups can hinder their 
access to resources when a model allocates these resources. 
Consider, for example, our school admission model where eligible 
students with foreign nationalities were less often admitted than 
their peers with British nationality. The non-British students are 
likely to experience more difficulties in their prospective careers 
where the name of the university plays a role in their chances of 
admission. 

Figure 4: The difference between allocation 
harm and representation harm 
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Denigration harm
When algorithmic systems are actively derogatory or offensive, 
we speak of denigration harm. This harm is generally most 
prevalent in models that are deeply embedded in unstructured 
data, for example in text, images, videos or other content, and it 
occurs less frequently in classification and regression algorithms. 

For example, a chatbot learning from social media data can 
generate hate speech from intentionally malicious users (Bird et al., 
2020). Microsoft’s Tay is a clear example of denigration harm. 
This self-learning chatbot learned from its interactions with people 
on Twitter, and soon began to post very harmful and offensive 
tweets on Twitter, including antisemitic and racist posts such as 
“HITLER DID NOTHING WRONG”.

Stereotyping harm
This harm refers to the tendency of AI systems to assign 
characteristics to all members of a group based on stereotypical 
features shared by a few (Abbasi et al., 2019). Unable to assess a 
person fully, the AI system will use proxies to fill in the knowledge 
gaps with potentially stigmatizing information. This stereotyping 
mechanism is consequence of using average-group statistics to 
judge an individual belonging to that group (Verma & Rubin, 
2018). Similar to denigration harm, stereotyping harm often occurs 
in unstructured data, such as in videos and images. 

An example of stereotyping harm is Google’s labelling application, 
which has identified black American multiple times as “gorillas” 
(Pessach & Shmueli, 2020)

Procedural harm
An AI system contains procedural harm when it makes decisions 
based on characteristics that should not be relevant for the 
prediction task, regardless of whether they are predictive or not 
(Weerts, 2021a). For example, a hiring model penalizing applicants 
with more work experience than needed might exhibit a form of 
procedural harm, as they should not be considered less suitable for 
the job just because they have better career backgrounds. 

This type of harm could be partly mitigated by making the decision 
process more transparent and understandable for decision makers, 
hereby increasing their insight into how the model arrived at its 
decisions and whether these decisions were made on reasonable 
grounds. Algorithmic accountability and transparency are therefore 
key for mitigating procedural harm.

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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Chapter Takeaways
•   AI systems can perpetuate diverse types of harms to individuals 

and groups of people. 
•   See Figure 5 for an overview of the discussed harms in this 

chapter. 

Majority of fairness research focuses
on these two harms

Most prevalent in
unstructured data

Closely related to interpretable
machine learning

Types of Harm in AI Systems

Allocation
The system extends or
witholds opportunities,

resources, or information.

Stereotyping
The system reinforces

stereotypes.

Quality-of-Service
The system does

not work equally well
for all groups.

Representation
The development/usage of
the system overrepresents

or underrepresents
certain groups.

Denigration
The system is actively

derogatory or offensive.

Procedural
The system makes decisions in 
a way that violates social norms.

Figure 5: A summary of the harms that can prevail in AI systems. Source: Hilde Weerts
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4. The Fairness Pipeline

A common misconception of addressing fairness in models is that 
it is often considered as a purely technical problem, while structur-
al bias is a social issue first and a technical issue second. Fairness 
problems are mainly caused by human decisions through the 
model development cycle that led to the under- or misrep-
resentation of people from vulnerable demographic groups. 
This poor representation can result in harmful model outcomes for 
these minority groups. 

In this chapter, we discuss how fairness issues can be addressed 
through the model development cycle. We navigate through each 
phase of the model development cycle and describe the problems, 
harms and biases that can occur. For each of the risks, we propose 
actionable mitigation techniques and provide guidance in how to 
document the findings during the Fairness Pipeline.
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Overview of Fairness Pipeline
The Fairness Pipeline displayed in Figure 6 covers all five phases of 
the model development process and the tools that can be used to 
mitigate biases.

Translation of 
Real-World 
Problem to 

Model

Data Collection 
& Processing

Model 
Building Evaluation Implementation 

& Deployment

If bias is found, 
go back to 
previous phases

1
Phase

The Five Phases of the Fairness Pipeline

Tools

2 3 4 5
AI Impact 
Assessment

Overview of 
stakeholder groups

List of harms

Overview potentially 
impacted demo-
graphic groups

Fairness def inition 
& metrics

Extension of decision 
space with more 
interventions

Reweighing of train 
examples

Sampling Methods

Inclusion of group 
differences in model 
design

Feature Importance 
Methods

Bias Analysis

Bias Scenario 
Simulations

Visualisations & User 
Interface for stake-
holders

Model Cards

Exploration of 
Counterfactuals

Monitoring Plan

Datasheet for dataset

Feature Review

Target variable & 
sensitive attributes 
investigation

Socio-technical 
context exploration

Figure 6: 

The phases and 
mitigation strategies 

of the Fairness 
Pipeline.
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1 Phase 1: Translation of Real-World Problem 
to Model
The first part of the AI development cycle consists of researching 
the problem that the AI system intends to solve or optimise, and 
examining whether using a predictive technology is the best 
means to solve the problem. 

If we decide that a predictive model is the most suitable tool for 
tackling our problem, we can focus on transforming this real-world 
problem to a task that can be handled by a predictive model. 
During the modelling process, we make choices about which 
elements of the real world should be included or excluded. We 

then translate these components to features, with specific 
attention paid to the target variable and the sensitive information 
that we (in)directly include in the dataset. The target variable is 
the output of our model: it represents the feature that we want 
to predict using other features. 

Several traps and biases may occur in the first phase. We discuss 
the Solutionist Trap, Abstraction Trap, Ripple Effect Trap and 
Construct Validity Bias. 
 
Solutionist Trap
In this phase, the potential of technology as a means to solve a 
problem is often overestimated, leading to a higher risk of falling 
into the Solutionist trap. 

To prevent the solutionist trap from happening and to create a 
more realistic view on whether the problem can indeed be solved 
or supported with a model, ask yourself the following questions:
•   How would using a predictive model offer a solution for 

the problem of interest?
•   Which other solutions are available to solve this problem? 

Why were these solutions not sufficient (anymore)?
•   Why should we use an AI technology to solve this problem?
•  How will we know if our project with AI technology is 

successful? How will the performance be measured in terms 
of organisation goals?

FOR 
SALE

Machine learning
creates bias

when it’s tasked 
with answering 
questions like...

Who is likely to
commit another crime?

Who should be eligible
for same-day delivery?

Who hears about career
opportunities in STEM?

Who sees ads for
good housing?

Figure 7: The objectives and target variable of 
the model can sometimes lead to discriminating 
effects.
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Abstraction Traps
The main risks arising during this phase is incorrectly translating 
the problem to a predictive model. For example, we might 
oversimplify the problem and the context that we want to solve 
using algorithms, resulting in an abstraction trap. We can also 
encounter the portability trap which occurs when we fail to 
translate the problem into a predictive algorithm, leading to an 
oversimplified and unrepresentative model. 

To mitigate the risk of abstraction traps, discuss with domain 
experts whether the translation of the problem formulation into 
a model is modelling the socio-technical context adequately. 
Map out all the possible factors that may have an impact on the 
algorithm and discuss with domain experts which of these factors 
can be left out and which can be included. As for the portability 
trap, make explicit what the differences are between the initial 
and the new context when reusing a model, and map how this 
may (negatively) affect the outcomes of the model. 

Ripple Effect Trap
Additionally, the introduction of a new technology in a work 
process often changes the social dynamics within the system in 
which it operates. For example, the new technology might impact 
the power dynamics within the system due to the changed roles 
and responsibilities of employees. The effects of the changed 
dynamics can be harmful when not anticipated beforehand. 
To avoid falling into this Ripple Effect Trap, pay sufficient attention 

to how the model can affect the behaviour, perception and 
expertise of all actors whose work is somehow involved with 
the newly introduced model, and investigate the relative power 
dynamics between the actors in the system. 

Construct Validity Bias
Another form of bias that may be introduced in this phase is 
construct validity bias. This complex bias occurs when we use 
features or target variables that are difficult to measure because 
they are unobservable constructs, such as socio-economic status 
or fraudulent behaviour, resulting in a mismatch between the 
real-world problem and the model. When using unobservable 
constructs as features or predict a target, there is a high risk of 
ending up with a model that poorly represents these concepts. 

Inspecting an AI system for traces of construct validity bias is not 
an easy task. We need to gain deep insight into how proxy 
variables (including the target variable) are constructed. A way 
to mitigate this type of bias is by collecting multiple measures 
to form the target variable. In addition, the conceptualization 
framework of construct validity in What is Construct Validity? 
or (Jacobs, 2021) offers a starting point to evaluate the construct 
validity of your variables. 

Note that construct validity bias first occurs at the first phase of 
the model cycle, but may also creep up during other phases.

Box: Defining the Model 
Objective
When defining your goals, try to directly 
relate  
the problem with 
• Improving;
• Maximizing;
• Increasing;
• Decreasing;
• Mitigating, or 
• Reducing a relevant outcome or 

metric.

By using these keywords, the defined 
goals become more concrete and 
unambiguous, hereby decreasing the 
risk for abstraction traps. 

Source: Data Science Project Scoping 
Guide (Ghani et al., 2020)

https://fairlearn.org/v0.7.0/user_guide/fairness_in_machine_learning.html#fairness-of-ai-systems
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Tools during Phase 1 
The Artificial Intelligence Impact Assessment (AIIA – or KIIA in 
Dutch) is a helpful tool to start to address the solutionist trap. 
The impact assessment provides guidance through the legal and 
ethical considerations when making decisions about AI systems 
(ECP | Platform voor de InformatieSamenleving, 2018). Completing 
step 1 – 3 is a particularly helpful exercise at this phase. 

Since many key choices are made during this phase that can 
introduce bias, it’s important to elaborate on these decisions. 
Moreover, during this phase we should establish who our stake-
holders are, so we can educate them on the model development 
cycle. All these findings will be documented so that we can 
continuously evaluate these decisions during later phases. 

The discussions and documentation should at least cover the 
following topics:
1.  Stakeholders
Describe the stakeholders who will be involved in the development 
and deployment of the model, such as the decision-makers and all 
the other people (in)directly affected by the system. It is important 
to involve stakeholders continuously throughout the lifecycle of the 
algorithm, since they all bring in their own valuable expertise and 
experiences about the problem. Using these multiple perspectives, 
we can minimise the risks observed in phases 1 and 2. 

2.  Demographic Groups
Define the demographic groups which the AI system is likely to 
impact. These demographic groups can be formed by (combina-
tions of) sensitive attributes, such as by race, gender, age, or 
disability. 
• See also Figure 1 for an overview of all the sensitive attributes.
• The use of personas can also help to better describe the 

demographic groups. These can be created in collaboration 
with stakeholders and verified by domain experts who have 
experience with the population of interest. See also  
this introduction on personas website for more information 
about how to create these descriptions. 

3.  Fairness Definitions and Metrics
We recommend considering the fairness of the algorithm as early 
as possible. More specifically for this stage, we can begin to think 
about what fairness definition and metrics would be applicable to 
our algorithm.
•  Discuss with stakeholders: Which types of mistakes are you 

more willing to make? This question helps with scoping the 
bias analysis.

•  See the fairness definitions and metrics in  
Chapter 5: The Bias Analysis 

https://static1.squarespace.com/static/5b7877457c9327fa97fef427/t/5c368c611ae6cf01ea0fba53/1547078768062/Artificial+Intelligence+Impact+Assessment+-+English.pdf
https://www.interaction-design.org/literature/article/personas-why-and-how-you-should-use-them
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4. Target Variable and Sensitive Attributes
Describe the considerations made for the target variable and the 
sensitive attributes to avoid construct validity bias. Pay specific 
attention to describing how these variables will be measured. 

5. Socio-technical Context
Describe the socio-technical environment in which the model 
will be deployed. 
•   How can the sociotechnical context be described in this 

AI system?
•   How will the working process change due to the new 

AI system?
•  Are there any relevant regulations, standards or policies 

that should also be considered?
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2 Phase 2: Data Collection & Processing
The second phase consists of data collection and processing. As 
this phase tends to produce most bias due to the prejudices and 
harmful historical patterns embedded in the data, it is essential to 
pay close attention to the ways in which seemingly small choices 
might affect outcomes. 

During data collection, a dataset is compiled by defining a target 
population and defining and measuring features and labels. As 
it is usually not feasible to include the entire target population, 
a sample is used for labelling. Often however, the process of 
compiling a dataset is skipped altogether: instead, ML developers 
will work with an existing dataset. This means the history and 
choices behind the sampling process are unknown, which creates 
a larger risk of bias.

When the data collection and sampling process is non-transparent or 
erroneous, there is a greater risk that the model will generate 
discriminatory outcomes caused by historical bias and statistical bias. 

Historical bias
This type of bias is caused by data that reflects the human biases, 
prejudices and other effects of societal or historical inequities, 
leading to representation and allocation harm. We identified the 
following mitigation techniques:
•  Analyse which unjust patterns are embedded in the dataset 

in collaboration with domain experts. Based on the demo-
graphic groups defined in the first phase, further research can 
be done to investigate how these groups are represented in 
the dataset. 

•  Additionally, since historical bias is often caused by problematic 
distributions of the features and/or the target variable for the 
minority groups in the dataset, we could improve these 
distributions with over- and undersampling techniques. 
These sampling techniques can be used to systematically 
over- or undersample the features and the target for minority 
groups, for example by assigning more desired target labels to 
minority groups which increases the probability that they 
receive a desired outcome by the model. For more information, 
see the mitigation techniques for representation bias.

•  Inspect the decisions and interventions that result from the 
outcomes of the model, especially when they have a puni-
tive nature. Discuss with stakeholders how to extend the set of 
decisions and interventions with more assistive actions. For 
example, for loan eligibility models, extend the decision space 
with options to offer different interest rates and payment terms 
(S. Mitchell et al., 2021).

Discuss how 
structural oppression 

and discrimination 
has manifested in 

your particular 
domain over time.
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Statistical bias
Statistical bias stems from a mismatch between the sample used to 
train a predictive model and the world as it currently is (Suresh & 
Guttag, 2021). Here, we discuss representation bias and measure-
ment bias.

Representation bias
This type of bias occurs when some groups are underrepresented 
in the dataset, leading the model to not generalize well for these 
groups and eventually causing quality-of-service harm (Weerts, 
2021a). The underrepresentation of demographic groups in the 
dataset is often caused by selection bias, where a sample is 
selected as dataset in a way that is irreflective of the real-world 
distribution.

As representation bias is one of the most pervasive forms of bias, 
we spend a bit more time assessing how to prevent and mitigate 
it here. 

To prevent representation bias:
•  Be aware of your own blind spots as a data scientist and 

consult domain experts;
•  Develop the model with a diverse team;
•  Ensure your dataset contains sufficient instances of minority 

groups. The population selected for the algorithm’s training 
should have similar distributions and proportions for all 
subgroups and for each protected attribute. Data visualisation 
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techniques can be helpful to gain more insight into the 
differences between the data of the minority groups and the 
majority group.

To mitigate representation bias:
•  Collect additional data to mitigate the dataset imbalance;
•  Find ways to deal with sampling errors. Consider, for example, 

the pre-processing mitigation algorithms described in the 
Appendix. These include methods to reweigh the instances of 
the dataset such that people from unprivileged groups with 
favourable labels get assigned higher weights while privileged 
people with favourable labels are assigned lower weights.

•  Use sampling techniques to obtain balanced dataset, for 
example with oversampling, undersampling and stratified 
sampling (Figure 9). These sampling techniques are only 
conducted on the training set: the validation and test set 
remain untouched. 

For a Python package about dealing with imbalanced data, we 
recommend the Imbalanced-Learn package and reading through 
the corresponding paper (Lemaître et al., 2017)

Measurement bias
Measurement bias occurs when the data contains systematic 
patterns of measurement errors which are greater for some groups 
than for others, leading to a greater magnitude of errors for these 
groups and resulting in quality-of-service harm. 

To mitigate the risk of measurement bias, re-evaluate the 
measurement or annotation process from a more context-aware 
perspective. Consult domain experts to provide more background 
information about all the factors that are related to the target 
variable, and select together which features are less prone to 
measurement errors. See also the proposed mitigation techniques 
of Omitted Variable Bias. If there is some information available 
about the ground truth of the data, then this information will be 
valuable in assessing the model for measurement bias.

Undersampling

Original Dataset Sampled Dataset Original Dataset Sampled Dataset Original Dataset Original DatasetDef ining strata

Removing
samples

from majority
group

Adding 
samples to 

minority 
group

Oversampling Stratif ied Sampling

Figure 9: The difference between the sampling 
methods. With oversampling methods such as 
SMOTE (Chawla et al., 2002), ADASYN (He et 
al., 2008) and ROSE (Menardi et al., 2014), 
samples are taken from the minority group to 
create more samples. Undersampling tech-
niques, including ENN (Hattori & Takahashi, 
2000) and Random Undersampling (Elhassan et 
al., 2016), are used to remove samples from the 
majority group. With stratified sampling, the 
population is divided into demographic groups. 
Random samples are then taken from each 
stratum (Hayes, 2020).
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Tools during Phase 2 
Besides our bias-specific solutions, we will discuss two valuable 
good practices for the Fairness Pipeline:  
1) The Datasheet and 2) The Feature Review.

Datasheets
It is important to describe the choices behind the data collection 
and sampling process in detail, as this gives insight into the 
distribution of the sampled population and can be used to find 
traces of representation bias. The datasheets introduced by Gebru 
et al. (2021) can be useful here: this tool helps with documenting 
the key information about the dataset). The datasheet includes 
information about the following dataset properties:
•  The source of the dataset;
•  The timeframe over which the data was collected;
•  The collection, aggregation or curation process of the 

dataset, which also includes the used software, hardware, or 
infrastructure to collect and process the data;

•  The (pre)processing techniques used to prepare the dataset 
for the model training phase. 

See this link for a datasheet template.

The Feature Review
In the Feature Review, the relevant characteristics of the dataset 
features are documented and evaluated for potential links to direct 
or indirect bias. This descriptive analysis is compiled in collabora-
tion with domain experts and end users to gain more insight about 
the features and business rules that shape the AI system. Specifi-
cally, the Feature Overview helps with determining:
•  Which features have a larger risk for direct or indirect bias;
•  To which sensitive attributes each feature is linked. These 

sensitive attributes help with determining the demographic 
groups who will be evaluated during the bias analysis in Phase 4.

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4t8QB
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The Feature Review is one of the key documents of the Fairness 
Pipeline and the bias analysis. Therefore, make sure to schedule 
sufficient time with stakeholders to fill in the document. 

For each feature, include the following information:
•  What is the source of this feature?
•  What does this feature tell us? How can it be interpreted?
•  How is the information behind the feature currently used in 

the work process? 
•  Is there any legal, academic or common-sense justification 

for the link between this feature and the target variable? If so, 
how credible, strong and actual is this support? 

•  To which protected attributes is it linked? (See Figure 1 for 
an overview of the protected attributes) 

•  To which demographic groups does this feature link?
•  Will this feature be evaluated during the bias analysis?  

If so, will it be analysed for indirect or direct bias? (see also 
Chapter 5 for an overview of biases) 

Make sure to continuously update the information in this overview, 
as it will be often used in the subsequent phases to describe the 
results of the applied Fairness Pipeline tools. 

Phase 2 - Data Collection & Processing

Phase 3 - Model Building Phase 4 - Evaluation

Feature Review

Link to
demographic

group(s)

Link to sensitive
attribute(s)

Justif ication
feature - targetInterpretationData Source

Results Feature
Importance

Method

Results bias
analysis



26 The Fairness Handbook  |  May 2022

3 Phase 3: Model Building
In the modelling phase, the model is built and trained. Here, 
fairness issues can arise when an unfit model is selected or 
when the modelling choices result in the prioritization of an 
objective that leads to more errors for underrepresented 
groups. Biases in this phase include learning bias, aggregation 
bias and omitted variable bias. 

Learning Bias
Learning bias occurs when the model prioritizes some objective, 
e.g., accuracy, that damages a fairness-related outcome. Mitiga-
tion techniques should target the defined learning objectives 
and associated learning processes. Moreover, since this bias can 
amplify performance disparities on underrepresented groups, it is 
important to ensure there is no representation bias. With a more 
representative and balanced dataset, the model will be less prone 
to only preserving information about the majority group.

Aggregation Bias
There is a greater risk for aggregation bias when a single model is 
applied on data consisting of (demographic) groups with distinct 
distributions that should be treated differently. In other words, the 
model wrongly assumes that the data distribution is homogene-
ous. Solutions for minimizing the risk for this bias include:

•  Adjust the objective function to include the group differen-
ces in the data. In some cases, incorporating information about 
group differences into the design of the model can lead to a 
simpler function that the model can learn, which in turn can 
improve performance across groups. A branch to look into are 
coupled learning methods such as multitask learning, which 
modify the parameters of the model objective to also consider 
the group differences (Suresh & Guttag, 2021).

•  Adjust the training data to fit the objective function better, 
for example with data transformation techniques such as the 
Fair Representation Learning method introduced by (Zemel et 
al., 2013).

Omitted Variable Bias
This type of bias occurs when a single or multiple important 
features are left out of the model (Verma & Rubin, 2018). To 
mitigate this risk, use feature importance methods to evaluate 
the relationship between each feature and the target variable. 
The Permutation Feature Importance method is one of the 
techniques that could be used (Molnar, 2020). This method 
measures the increase in the prediction error of the model after 
permuting the feature’s values. Consult this source for a more 
detailed explanation about Permutation Feature Importance.

https://christophm.github.io/interpretable-ml-book/feature-importance.html
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Tools during Phase 3 
It is crucial to diagnose the model and the generated outcomes for 
presence of bias and to grasp why the model arrived at its out-
comes. The more transparent the model is, the easier this process 
will be, so make sure to look into methods for increasing transpar-
ency and understandability of the model. 

When prioritizing transparency and understandability, the most 
straightforward option is to choose human-interpretable models, 
such as regression models, decision trees, Naïve Bayes Classifiers 
and K-Nearest Neighbours. The open-source book “Interpretable 
Machine Learning” by Christoph Molnar is a recommended read 
for learning more about how to select interpretable models, or 
how to implement model-agnostic methods in more complex 
algorithmes to understand the decisions generated by the model.

Besides making the models more explainable, we suggest two 
valuable actions for when assessing the model for discriminating 
behaviour: Feature Importance Methods and Counter factuals. 

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
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Feature Importance Methods
After training the model, feature importance methods such as 
Permutation Feature Importance (Breiman, 2001) or SHAP (Lund-
berg, 2019) can be used to calculate the relative importance of 
each feature. These results should be communicated with the 
domain exports and end users to evaluate whether the most 
predictive values are proxies for indirect bias and whether these 
features are indeed essential for solving the problem in the real 
world. 

If stakeholders do not recognize the most predictive features 
being essential for the real-world problem, it is advisable to 
re-evaluate the features and the functioning of the model. By 
doing so, the risk that the model produces harmful and erroneous 
outcomes is minimized. Finally, make sure to register the feature 
importance results in the Feature Review. 

Explore Counterfactuals
With counterfactuals, we change the values of sensitive attributes 
(or features linking to sensitive information) and observe whether 
the model outcome changes positively or negatively. 

Suppose, for example, we inspect a model that determines 
eligibility for a life insurance, and we include a feature that 
indirectly links to nationality, such as history of foreign travel. If 
changing the value of this feature from Italy to Lebanon increases 
the insurance rate significantly, the model might be biased against 
nationality, ethnicity or migration background.

To experiment with counterfactuals, Google's What-If Tool offers a 
wide range of possibilities to probe your model and investigate 
which counterfactuals are present. The insights obtained from 
exploring counterfactuals can, for example, help with determining 
whether the decision space of the model should be extended with 
more interventions.

Relative Predictive Importance
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Figure 10: An example of a feature importance method conducted on the 
school admission model discussed in Chapter 2.

https://pair-code.github.io/what-if-tool/
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4 Phase 4: Evaluation
During the evaluation stage of the model development cycle, the 
performance of the model on the test set is evaluated. This test set 
contains a representative set of instances not used for model 
training.

Assumptions behind Evaluations
Generally, model evaluations are based on three underlying 
assumptions:
•  Decisions can be evaluated as an aggregation of separately 

evaluated individual decisions. This includes assuming that 
outcomes are not affected by the decisions for others, an 
assumption known as no interference.

•  All individuals can be considered symmetrically, i.e., identical-
ly. This assumes, for example, that the harm of denying a loan 
to someone who could repay is equal across all people.

•  Decisions are evaluated simultaneously. This means that they 
are evaluated in a batch as opposed to serially, and therefore 
they do not consider potentially important temporal dynamics. 

Evaluation bias
Evaluation bias occurs when the evaluation metrics are inappropri-
ate for the model and dataset, hereby disguising the model’s 
performance for smaller-sized demographic groups. 

Use disaggregated evaluation metrics on smaller groups of data 
to gain more insight in the model’s performance on minority 
groups. These subgroup metrics can also be used to compare the 
performance of groups with each other to find performance dispar-
ities, which often indicate various kinds of biases that we discussed 
in this chapter. For example, both accuracy and precision could be 
calculated and compared for the self-defined groups. See also the 
confusion matrix in Figure 12 from Chapter 5 for more examples of 
metrics that can be calculated for each group. 

Keep in mind that selecting smaller-sized groups and metrics is 
always application-dependent, and it often requires intersectional 
analysis and privacy considerations. Therefore, input should be 
sought from domain experts and affected populations who 
understand the usage and consequences of the model (Suresh & 
Guttag, 2021). Tools such as the Fairness Tree , which will be 
discussed in Chapter 5, can assist in selecting these appropriate 
metrics. 

Besides reporting the performance of models on more granular 
subsets of data, we also recommend to closely inspect the data 
distribution for dataset imbalances that cause the model to 
underperform for certain subpopulations. If the subgroup evalua-
tion metrics indicate a disparity in performance, then considering 
new ways to generate more representative data could be helpful 
to mitigate the evaluation bias, which are mentioned at the 
solution strategies for representation bias. 
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Tools during Phase 4 

Bias Analysis
In the fourth phase, we conduct the Bias Analysis, one of the most 
important actions of the Fairness Pipeline. Here, we use fairness 
metrics to compare the model’s performance across demographic 
groups and to find the groups for which the model is substantially 
underperforming, hereby possibly indicating bias. 

As the bias analysis is a very intense and elaborate process, we 
dedicated it its own chapter which which we recommend reading 
before proceeding with the last phase. Based on the obtained 
results from the bias analysis, it is recommended to return to 
previous phases to solve the underlying problems causing the bias.

Bias Scenario Simulations
An useful exercise within the bias analysis is to create realistic 
simulations of unfavorable outcomes for demographic groups and 
to discuss the follow-up steps  of these results with stakeholders. 
The simulations can be made using different confusion matrix 
outcomes for demographic groups, thereby highlighting how the 
model performs differently for advantaged versus disadvantaged 
groups. 

Simulating different scenarios helps with establishing the fairness 
definition, metrics and with determining suitable follow-up steps 
to mitigate the bias for the disadvantaged group. 
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5 Phase 5: Implementation & Deployment
In the final stage of the model development cycle, the model is 
being deployed in a real-world setting, where its predictions are 
part of a system that affects individuals and groups of people. 
Ideally, the population that the model sees in the real-world resem-
bles that of the development sample, but this is not always the 
case. Deployment in the real-world does not mean that the model 
or the data will not be adapted: the model may be adapted to 
increase its interpretability and visualizations might be needed for 
stakeholders to understand the model’s reasoning and results.

The biases that can arise at the final phase are:
•  Automation bias;
•  Deployment bias;
•  Reinforcing feedback loop.

Automation Bias and Deployment Bias
When people prefer the results generated by algorithms over 
those of humans, we speak of automation bias. It is crucial to 
remain critical when using automated systems. The people who 
process or work with the results of the models must therefore be 
properly trained to be able to critically evaluate the generated 
outcomes. It is also important that the deployed models have a 
high degree of interpretability and understandability, so that 
reasoning errors can be detected more quickly in the model. 

Deployment bias occurs when decision-makers and other end 
users behave unexpectedly with the AI system, hereby resulting 
in unfair outcomes and interventions (Suresh & Guttag, 2021). 
The mitigation strategies that we mention are identical to those 
to mitigate automation bias: they are aimed at educating the 
stakeholders about the AI system and informing them about 
the potential risks and harms when deploying the model into 
the real world. 

It’s also important to keep in mind that most issues caused by 
automation and deployment bias can be traced back to the 
abstraction and framing traps that we discussed in the first phase 
of the model development cycle. 

Reinforcing Feedback Loop 
This type of bias occurs when the output of a biased model is used 
to retrain the model, hereby creating a harmful feedback 
mechanism that amplifies historical bias. The following solutions 
can prevent the effects of the harmful feedback loop: 

•  Based on an actual case of a reinforcing feedback loop in 
predictive policing where arrest data was used to train the 
model and police officers were concentrating on already overly 
policed communities, researchers found that incorporating 
community-driven data was a suitable mitigation strategy to 
reduce the feedback effects. The community-driven data 
consisted of residents who reported on crimes. Adding data 
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from other sources seems therefore as a suitable solution to 
prevent the amplification of certain undesired patterns in the 
model and data. 

•  Since the bias is likely to be caused by measurement errors, 
we recommend considering the mitigation strategies 
discussed at Measurement Bias.

•  Add also the “neutral” labels to the new dataset. That is, in 
fraud detection models, add also the people to the dataset 
who were checked for fraud and who did not commit fraud. 

Tools in Phase 5 
The central theme of the final phase is increasing the understanda-
bility of the AI system. The lack of fairness in AI systems is often 
linked to a lack of explanatory capabilities: if the results of the 
model cannot easily be understood or interpreted, it is difficult 
to assess its fairness, hereby making a system vulnerable for 
biases (Dignum, 2021). Below, we discuss two options to increase 
understandability and suggest a monitoring plan for tracking the 
model’s functioning after deployment and prevent the reinforce-
ment feedback loop. 

Visualisations and User Interfaces
First, to educate stakeholders about the functioning of the AI 
systems, create intuitive visualisations and user interfaces that 
give insight into how the model arrived at its outcome, including:
•  Reporting and visualising which features and values played an 

important role for generated decision, for example with SHAP 
(Lundberg, 2019) or Partial Dependence Plots (Molnar, 2022)

•  With how much certainty the outcome was generated. This 
guides end users to use their own judgments more when the 
model generates an outcome with low certainty. 

•  Additional information to support the stakeholders’ judgments.

Model Cards 
Despite all our actions in the Fairness Pipeline, each model will 
continue to have vulnerabilities that could potentially lead to 
discriminatory behavior against minority groups. The eradication of 
biases is a continuous process in which human biases are interwo-
ven into the data and the model development process in compli-
cated ways.

It is therefore crucial to be transparent about these vulnerabilities, 
so that policy makers can take these risks into account when they 
write policies about the use of the model. Model cards are useful 
tools to document the most important information of the data, the 
model and its performance comprehensively. 
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Model cards are short documents (one or two pages) that report 
the model’s performance for the demographic groups in the 
dataset and summarize the ethical, inclusive and fair considerations 
of the model (M. Mitchell et al., 2019). See also the Model Card 
Prompts in the Appendix for an overview of the components that 
can be included on model cards. 

Monitoring Plan
Finally, we want ensure that the model’s functioning can be 
monitored, and feedback can be provided to prevent the bias 
caused by a reinforcement feedback loop. This can be done with a 
monitoring plan describing the responsibilities and tasks of 
employees in monitoring the AI system after deployment. These 
responsibilities include:
•  Handling complaints of people on the AI system. Everyone 

should be able to report discriminatory or biased practices, and 
the appointed employees should investigate these cases;

•  Registering the errors of the model.

Chapter Takeaways
•  The Fairness Pipeline explains which fairness issues can arise 

during the five phases of the model development cycle and 
offers actions to minimize the risks for the traps and biases that 
can lead to discriminating behaviour in the model.

•  To mitigate the risks for the first phase, we describe the 
benefits of filling in the AIIA and suggest an in-depth explora-
tion of important factors that include the stakeholder groups, 
target variable and the socio-technical context of the model.

•  For the data collection phase, we discuss solutions for historical 
and statistical biases. Additional good practices for this phase 
include creating datasheets and a Feature Review.

•  In the model-building phase, we discuss feature importance 
and exploring counterfactuals methods to gain more insight in 
the model’s decision-making process.

•  The main part of the evaluation phase is dedicated to carrying 
out a bias analysis to find out whether the model treats 
disadvantaged demographic groups unfavourably.

•  Finally, in the implementation deployment phase, we suggest 
tools to increase the model’s understandability through 
visualizations. We also strongly recommend creating a Monitor-
ing Plan to evaluate the model’s functioning and performance 
after deployment. 
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5. The Bias Analysis  

Due to the increased use of automated decision-making systems 
that support work processes, it is crucial that these models are 
evaluated thoroughly for the presence of harmful bias. The first 
step of the bias analysis is to carefully define what fairness means 
for your use case, considering the context in which it will be 
deployed. To then measure whether our model produces fair 
outcomes according to our fairness definition, we can use fairness 
metrics. These fairness metrics compare the model’s performance 
across groups defined by sensitive characteristics, and in this way, 
measure the presence and magnitude of bias in the model. 

One key challenge, however, is that there is no universally accept-
ed definition of what it means for a model to be fair, and there is 
no clear guideline on which fairness measures as “best”. With 
fraud predictions, we want to minimize the risk that certain groups 
or individuals are incorrectly suspected of fraud, while with a 
school admission model we want to ensure that each group or 
person has the same probability of being admitted to the educa-
tion program. 

In this chapter, we guide you in conducting a bias analysis. 
This includes:
1.  Selecting the scale of the bias analysis by choosing between 

individual and group-level fairness;
2.  Choosing a fairness definition;
3.  Selecting a single or multiple fairness metrics that correspond 

with the adopted fairness definition;

4.  Defining the demographic groups of interest;
5.  Applying the fairness metrics on the groups to compare them 

and find the groups for which the model produces skewed and 
unfavourable results;

6.  Determining the bias decision thresholds that determine which 
actions policy makers should take based on the bias analysis 
results

A large part of our work is inspired from the Fairness Tree method-
ology of the open-source Aequitas Bias Toolkit. 

Individual versus Group Fairness
The scale on which we evaluate whether the model produces 
discriminating outcomes has a large impact on the bias analysis. 
In general, we can examine fairness from two points of view with 
individual fairness and group fairness (see Figure 10). 

With individual fairness, we evaluate whether the model produces 
similar results for persons who share similar characteristics. 
Suppose that two people with the same bank account history 
apply for a loan at their bank, and one of them receives his/her 
loan, while the other person’s application is denied. If we would 
assess why the model is producing different outcomes for these 
persons, we should evaluate the fairness on individual level. 
However, in practice, it is difficult to find a similarity metric that 
measures the degree of similarity between individuals (Fleisher, 
n.d.). If you are interested in learning more about individual 

http://aequitas.dssg.io/
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fairness, we recommend the capstone paper by Dwork et al. (2012) 
about individual fairness and the Lipschitz condition. 

With group fairness, we evaluate whether the model treats groups 
of persons defined by sensitive characteristics worse when 
compared with other groups (Weerts, 2021a). In other words, 
we measure the extent to which a particular group statistic differs 
across groups. 

In this handbook, we will focus on group fairness, since this level 
allows a wider range of fairness metrics that can be used. 

Requirements for the Bias Analysis
Now that we established our focus on group fairness, we can 
select a fairness definition and metric(s) for our model. In this 
section, we explore the main components that are needed for 
choosing and applying a fairness definition and metric. The 
following components are needed for fairness metrics on group 
level:

The results of the model
•  The performance metrics of the model are summarized on a 

confusion matrix. This confusion matrix is a table that com-
pares the model’s predictions with the ground truth of the 
data. The confusion matrix not only shows the model’s perfor-
mance, but also displays the type of errors that the model 
made, which are the False Positives and False Negatives. Based 
on the four categories of the confusion matrix, we can calculate 
several ratios that provide insights about the model’s perfor-
mance on the protected groups. Figure 11 shows a confusion 
matrix and a selection of metrics that can be distilled from this 
table. 

The groups within the dataset that will be compared with each 
other. 
•  These groups are characterized by a single or combination of 

attribute(s) from the dataset that link to sensitive information 
(see Figure 1). Having a feature such as “sex” may lead you 
to split the data into a group of men and a group of women 

Individual
Fairness

Similar individuals
receive similar
outcomes or
treatments

Groups defined by
protected attributes

receive similar outcomes
or treatments

Group
Fairness

Figure 10: The difference between individual 
fairness and group fairness
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to compare the model’s performance on these groups and seek 
large performance discrepancies that indicate bias.  
 
In practice, it is not a straightforward job to establish the 
groups of interest, because most features present in the 
dataset link to sensitive information in many complex ways 
through indirect bias. Some suggestions for establishing the 
groups in the dataset can be found in section Forming Groups 
from Datasets.

•  True Positives (TP) are individuals for whom both the 
model prediction and actual outcome are positive labels.

•  False Positives (FP) are individuals for whom both the 
model predicts a positive label, but the actual outcome is a 
negative label.

•  True Negatives (TN) are individuals for whom both the 
model prediction and actual outcome are negative labels.

•  False Negatives (FN) are individuals for whom both the 
model predicts a negative label, but the actual outcome is 
a positive label.

Confusion Matrix Actual Values

True Positives False Positives

P (Y=1 | D)

P (D = 1|Y) P(D = 1| Y = 1):
True Positive Rate

P(D = 1| Y = 0):
False Positive Rate

P(D = 0| Y = 1):
False Negative Rate

P(D = 0| Y = 0):
True Negative Rate

P(Y = 1| D = 1):
Positive Predictive
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False Discovery Rate

P (D=Y)
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P(Y = 1| D = 0):
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P(Y = 0| D = 0):
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Y = 0

True NegativesFalse Negatives 

Figure 13: In this Confusion Matrix, we use the same example as our 
school admission model from Chapter 2.
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Selecting a Fairness Definition 
One of the main challenges in the bias analysis is determining how 
fairness should be defined for your use case. Each stakeholder may 
have a different understanding of fairness, which can be difficult 
when selecting a fairness metric. Here are some recommendations 
on selecting a suitable definition:
•  Organise a meeting with stakeholders to discuss their 

perspectives on what fairness means for them. These stake-
holders involve data scientists, decision makers, and a repre-
sentative sample of the persons who may be affected by the 
application of the model. Consider together with them how the 
different types of errors can harm individuals, groups of 
persons and society (Rodolfa et al., n.d.). 

•  Make simulations of the model outcomes in different 
scenarios, for example by using different confusion matrix 
results. By simulating the disparities across groups, we make 
fairness issues more tangible and visual, which often helps with 
establishing the fairness definition. 

•  Dive into the fairness metric selection process discussed in 
the sections below. Choosing a fairness definition may go 
hand-in-hand with selecting a metric, with each metric having 
its own goals, opportunities and constraints. Specifically, the 
differences between the metrics will be helpful in defining the 
fairness definition. 

Note that the bias analysis also offers options to adopt multiple 
fairness definitions for different purposes. For example, you 

might select different scenarios or focus groups and translate back 
what a fair model would look like for these persons. However, 
when conducting the bias analysis for multiple objectives, it is 
important to make explicit how each objective links to a 
fairness definition and metric, and to keep the results of each 
bias analysis separate from each other. This is because the same 
results do not necessarily apply to all objectives. 

Selecting a Fairness Metric 
Fairness metrics can be used to compare the model’s 

performance across groups. Since there is an abundance of metrics 
available to measure the group disparities, we use the Fairness 
Tree displayed in Figure 13 to navigate through the most impor-
tant considerations when choosing a metric. 

The Fairness Tree
The Aequitas Fairness tree developed by University of Chicago 
(Saleiro et al., 2018) can be used as a starting point to decide the 
scope of your bias analysis and find the right fairness metric(s). The 
fairness tree is part of the Aequitas open source bias audit toolkit 
containing tools to audit the predictions of AI systems and find 
biased outcomes. The main advantage of the fairness tree is that it 
allows both policy makers and data scientists to make an informed 
decision about the fairness definition and metric.

In the following sections, we zoom in a bit further on the concepts 
and competing options of the Fairness Tree. Figure 13 contains the 
numbers that represent the sections below.

http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/
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Do you want to be fair based on disparate 
representation 

OR 
based on disparate errors of your system?

Do you need to select equal number of people from each 
group 

OR
proportional to their percentage in the overall population?

Do you trust the labels?

Are your interventions punitive or assistive?

Can you intervene with most people with 
need, or only a small fraction?

Among which group are you most 
concerned with ensuring predictive equity?

Among which group are you most 
concerned with ensuring predictive equity?

Equal Selection ParityDemographic Parity

Equal NumbersProportional

Representation Errors

Yes No

Counterfactual Fairness

Punitive
(could hurt individuals)

Assistive
(will help individuals)

Small Fraction Most People

Everyone without regard 
for actual outcome

People for whom 
intervention is taken

Intervention NOT 
warranted

False Positives/
Group Size Parity

False Discovery Rate 
Parity False Positive Rate Parity Recall Parity (or

True Positive Rate)
False Negatives/
Group Size Parity

False Omission Rate 
Parity

False Negative Rate 
Parity

People not receiving 
assistance

People with needEveryone without regard 
for actual outcome

1.

2. 3.

4.

5.

6.

7.

What are your chances of 
being wrongly denied bail 

just given your race?

Among people denied bail, 
what are the chances you're 

innocent given your race?

Among people who should 
be granted bail, what are 

the chances you were 
denied bail given your race?

If we can only provide 
assistance to a small 

fraction of people with 
need, attempt to ensure it 

is distributed in a 
representative way

What are your chances of 
being wrongly left out of 

assistance given your 
gender?

Among people who don't 
receive assistance, what are 

the chances you had need 
given your gender?

Among people with need, 
what are your chances you 

don't receive assistance 
given your gender?

Do you want to be fair based 
on disparate representation

OR
based on disparate errors of your system?

Do you need to select equal number 
of people from each group
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Can you intervene with most 
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need, attempt to 
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bail just given your 
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denied bail, what 
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granted bail, what 
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you were denied 
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Figure 13: Fairness Tree developed by Aequitas
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1.  Disparate Representation versus Disparate Errors
The first decision concerns choosing between metrics to evaluate 
whether the model is fair based on disparate representation or on 
disparate errors. 

With representation-based metrics, we compare whether persons 
from both advantaged and disadvantaged groups have equal 
probability of being selected by the model, also named the 
selection rate. This method is often used to evaluate whether 
persons from different groups have equal access to be selected by 
the model for a desired service or good, such as a loan, insurance 
or admission to a school programme. These metrics are Demo-
graphic Parity and Equal Selection Rate Parity, which will be 
discussed in the next section. 

With error-based metrics, we evaluate the difference in error rates 
across groups. Suppose we have a model that either denies or 
approves of a loan and we are curious about if there is a bias 
against women, e.g., women are more often wrongly denied a 
loan. Using error-based fairness metrics, we can compare the False 
Negatives Rate (FNR) between men and women and determine 
whether women have a substantially higher False Negative Rate 
than men. The error-based metrics include False Positives Rate 
Parity, False Negatives Rate Parity and False Omission Rate 
Parity. These metrics will be discussed in later sections.
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2.  Demographic Parity versus Equal Selection Parity
In this section, we will look at Demographic Parity and Equal 
Selection Rate Parity. These metrics look at fairness as a problem 
of disparate representation. 

Demographic Parity 
According to Demographic Parity, a model is fair when the 
selection rate (also named acceptance rate) is equal for all the 
groups that we investigate for presence of bias. If a large discrep-
ancy is found between the selection rates of the groups, we 
mitigate this bias by picking a threshold such that the fraction of 
the members that qualify for a service becomes the same (Hardt et 
al., 2016). 

Demographic parity can be used to mitigate allocation harm and 
quality-of-service harm, as a low selection rate for a group means 
that the model less often assigns a favourable outcome for the 
persons in this group, which can result in, for example, more often 
denying applications for social benefits or loans for women when 
compared with men. 

Group 1
SR = 3/5 = 0.6 

predicted positive

predicted negative

Group 2
SR = 2/3 = 0.67 

Figure 14: With Demographic Parity, we analyse the difference 
in selection rate across groups
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Pros and Cons
Pros:
•  This definition is not affected by measurement errors within 

the data, because this fairness measure does not consider 
the actual model outcomes, such as the errors and correct 
predictions. Additionally, this metric aligns most with our 
human perception of what fairness entails, which makes this 
metric relatively easy to explain and communicate with 
stakeholders (Srivastava et al., 2019)

Cons:
•  By enforcing demographic parity, we treat groups differently 

to achieve the same selection rates. This can cause otherwise 
similar people to be treated differently, which can result in 
procedural harm, since some decisions from the model may 
not make sense anymore for individuals. Suppose we use the 
school admission model and calculate the selection rate for 
male students and for female students (0.6). Here, we could 
also decrease the selection rate of male students to 0.6 to 
achieve an equal selection rate, but this often makes less sense 
than increasing the women’s selection rate to 0.8. 

•  The fairness metric requires equal base rates for the different 
groups. A base rate is the selection rate observed in the 
ground truth data. For example, in a fraud prediction model, 
the base rate represents the probability that the persons from 

a group defined by sensitive attributes commit fraud. This 
base rate might be different across groups in reality, but 
demographic parity assumes these base rates to be equal. 

•  This method rules out any possible correlations between 
the sensitive attribute and the target. 

Assumptions behind Demographic Parity
Using demographic parity as the fairness definition, we have 
the following assumptions:
Regardless of what a measured target variable says,
1- Everybody is equal
For example, we may believe that traits relevant for a job are 
independent of somebody’s gender. However, due to social biases 
in historical hiring decisions, this may not be represented as such 
in the data.
2- Everybody should be equal
For example, we may believe that different genders are not 
equally suitable for the job, but this is due to factors outside of 
the individual’s control, such as lacking opportunities due to social 
gender norms. 

The dataset can 
reflect human 

decisions or second-
order effects of 

societal or historical 
inequities.
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When to Use Demographic Parity?
Demographic parity is a suitable fairness definition when:
•  We want to use AI systems to change the state of the 

current world by supporting unprivileged groups. This 
support includes, for example, admitting more students from 
underrepresented ethnicities when compared to other ethnici-
ties. 

•  We are aware of historical biases the quality of our data. For 
example, we might use Demographic Parity when our model is 
trained to hire software engineers at a company where nearly 
no women were hired before. 

Calculating Demographic Parity
The difference in demographic parity between groups can be 
calculated using the metric Positive Predictive Value. 
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Calculating Demographic Parity 
The difference in demographic parity between groups can be calculated using the metrics Positive 
Predictive Value.  
 

𝑃𝑃𝑃𝑃𝑃𝑃	 = 	
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇	𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇	𝑁𝑁𝑇𝑇𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃
 

Equation 1: Predictive Positive Value can be used to quantify demographic parity 

 
Disparate Impact: The Four-Fifths Rule as Threshold 
An application of demographic parity can be found in the American legislation named as disparate 
Impact, where the four-fifths rule is added to the equal selection rate criterion. We speak of disparate 
impact when a model indirectly discriminates against individuals or groups of people through proxy 
variables. In U.S. Law, the degree of disparate impact can be measured with the selection rate and 
the four-fifths rule: if the selection rate for a vulnerable group is less than 80% of that of the group 
with the highest selection rate, we speak of discrimination against this vulnerable group 
(Mondragon, 2018). The four-fifths rule is an example of a threshold used to determine when 
demographic parity has been seriously violated. However, we recommend setting up your own 
threshold for each use case that is appropriate for the context of the model. 
 

𝑃𝑃(𝑑𝑑 = 1|	𝐺𝐺	 = 	m)
𝑃𝑃(𝑑𝑑 = 1|	𝐺𝐺	 = 	𝑓𝑓)

	≥ 	1	– 	𝜀𝜀 

Equation 2: the formalisation of Disparate Impact 

Disparate Impact can be calculated using the Disparate Impact function on AIF360. 
 

Equal Selection Parity 
This fairness metric is almost similar to Demographic Parity. Equal Selection Parity compares whether 
equal numbers of people from each group were selected, independent of their group sizes. Hence, the 
only difference between Equal Selection Parity and Demographic Parity is that the first metric 
compares equal numbers, while the latter compares equal proportions.  
 
In our school admission example, this fairness metric would be satisfied if the exact same numbers of 
people were selected from each group, even if one group contains more students than the other.  
 

3. Trusting the Labels 
Returning to the Fairness Tree, we see that there is a choice to be made that depends on whether we 
trust the labels. Suppose we use a fraud prediction model. The dataset contains features, such as 
‘transactions’ and ‘average spend’, and a label for each instance, such as ‘high risk’ or ‘low risk’. As 
Machine Learning models are trained on the dataset, the labels should be trustworthy to ensure that 
the correct patterns are learned. Generally, of most datasets we can say that we can trust the labels. 
If not, then other, more creative options should be sought to work with the faulty dataset, such as 
Counterfactual Fairness.  
 

Met opmerkingen [MS27]: Can we say that it’s a faulty 
dataset when the labels cannot be trusted? 

Equation 1: Predictive Positive Value can be used to quantify demographic 
parity

Disparate Impact: The Four-Fifths Rule as Threshold
An application of demographic parity can be found in the Ameri-
can legislation named as disparate Impact, where the four-fifths 
rule is added to the equal selection rate criterion. We speak of 
disparate impact when a model indirectly discriminates against 
individuals or groups of people through proxy variables. In U.S. 
Law, the degree of disparate impact can be measured with the 
selection rate and the four-fifths rule: if the selection rate for a 
vulnerable group is less than 80% of that of the group with the 
highest selection rate, we speak of discrimination against this 
vulnerable group (Mondragon, 2018). The four-fifths rule is an 
example of a threshold used to determine when demographic 
parity has been seriously violated. However, we recommend 
setting up your own threshold for each use case that is appropriate 
for the context of the model.

Disparate Impact can be calculated using the Disparate Impact 
function on AIF360.

https://aif360.readthedocs.io/en/latest/modules/generated/aif360.sklearn.metrics.disparate_impact_ratio.html
https://aif360.readthedocs.io/en/latest/modules/generated/aif360.sklearn.metrics.disparate_impact_ratio.html
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Equal Selection Parity
This fairness metric is almost similar to Demographic Parity. Equal 
Selection Parity compares whether equal numbers of people from 
each group were selected, independent of their group sizes. 
Hence, the only difference between Equal Selection Parity and 
Demographic Parity is that the first metric compares equal 
numbers, while the latter compares equal proportions. 

In our school admission example, this fairness metric would be 
satisfied if the exact same numbers of people were selected from 
each group, even if one group contains more students than the 
other. 

3. Trusting the Labels
Returning to the Fairness Tree, we see that there is a choice to be 
made that depends on whether we trust the labels.  
Suppose we use a fraud prediction model. The dataset contains 
features, such as ‘transactions’ and ‘average spend’, and a label for 
each instance, such as ‘high risk’ or ‘low risk’. As Machine Learning 
models are trained on the dataset, the labels should be trustwor-
thy to ensure that the correct patterns are learned. Generally, of 
most datasets we can say that we can trust the labels. If not, then 
other, more creative options should be sought to work with the 
faulty dataset, such as Counterfactual Fairness. 

4. Counterfactual Fairness
An alternative way of approaching fairness is to focus more on 
causality to create causal pathways from sensitive attributes to the 
model’s decisions (see Figure 15). The causal pathways allow us 
to gain more insight in the judgments made by the model to 
evaluate whether these judgments are reasonable (S. Mitchell et 
al., 2021).

Additionally, we can translate these causal statements into 
counterfactuals to find out how a different feature value affects the 
model’s decision, which would still allow us to evaluate a model’s 
fairness for individuals sharing largely similar characteristics. For 
example, we could find out what the difference in outcome would 
be if a person would have a young versus old age for him to be 
hired by a company (S. Mitchell, n.d.). Causal reasoning can be 
used instead to design interventions to reduce disparities and 
improve overall outcomes, rather than to define fairness. Particu-
larly, causal graphs can be used to develop interventions at earlier 
points, prior to decision-making.
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However, there is a debate on whether the counterfactuals are 
well-defined. In practice, it is hard to reach a consensus in terms of 
what the causal graph should look like and it is even harder to 
decide which features to use even if we have such a graph, as we 
may suffer large loss on accuracy if we eliminate all the correlated 
features (Zhong, 2018). 

H: History

A: Age
B: SocioEconomic

Status

M: Education

d: Decision

Direct effectExample of a causal graph which can be used to 
investigate causal statements. Suppose we use a 
model to hire new personnel where the hiring 
decisions are mainly based on the applicant's 
educational background. If the model's outcome 
is affected by increasing the applicant's age 
while keeping the other features unchanged, we 
can conclude that the "Age" feature has a large 
influence on the applicant's probability of being 
hired. Source: Shira Mitchell 

https://shiraamitchell.github.io/fairness/#definitions-causality
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5. Punitive versus Assistive Interventions
The distinction between punitive and assistive interventions plays 
an important role in our bias analysis, as it helps with determining 
which type of errors (e.g., False Positives or False Negatives) are 
most harmful. 

When a model has interventions that are assistive in nature, 
people might be harmed when the model fails to intervene on 
them when they have need (Rodolfa et al., n.d.). A high rate of 
False Negatives is therefore undesirable, as it would mean that 
the model wrongly withholds this intervention from people. For 
example, for a model that decides who should receive a govern-
mental subsidy, we could compare the False Negatives Rate across 
groups to see whether there is a large discrepancy between 
advantaged and disadvantaged groups. 

On the other hand, with punitive models, people are harmed by 
the intervention, which makes the False Positives more suitable to 
further explore during the bias analysis. Suppose we have a model 
that predicts which of the defendants who committed a crime are 
likely to reoffend. If our model produces substantially more False 
Positives for people with a non-Dutch ethnicity when compared 
with people with a Dutch ethnicity, we can say that the model 
discriminates against people with a non-Dutch ethnicity.

For both the assistive and the punitive models, there are different 
metrics available, each of which can be used to find error rate 
disparities across groups. The main differences between these 
metrics can be attributed to the size of the intervention and the 
type of groups that are compared with each other. 

In the sections below, we will further describe the metrics for 
assistive and punitive interventions. We will explain the metrics for 
assistive interventions using the example of a model that distri-
butes a scarce financial subsidy amongst all applicants and use a 
fraud prediction model to elucidate the metrics of the punitive 
interventions. 
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6. Models with Assistive Interventions
The Fairness Tree shows the following four metrics applicable for 
models with assistive interventions:
•  Group Size-Adjusted False Negatives (FN/GSP)
•  False Omission Rate (FOR)
•  False Negative Rate (FNR)
•  Recall/True Positives Parity 

Group Size-Adjusted False Negatives (FN/GSP)
As discussed in the previous sections, for models with assistive 
interventions the False Negatives are of particular interest. 
A natural starting point is therefore to count the number of 
False Negatives for each group and compare these numbers 
with each other. Counting False Negatives would result in 
statements such as:

Twice as many men from group A who qualify for the subsidy 
were wrongly denied the grant when compared with the men 
from Group B.

However, if Group A would have twice as many men as Group B, 
then the difference in False Negatives is still deemed as fair. Thus, 
the method of comparing numbers of False Negatives neglects the 
group sizes of Groups A and B. For this reason, the Group Size- 
Adjusted False Negatives (FN/GSP) metric might be more applica-
ble to compare the FN rate among differently sized groups. 

Calculating FN/GSP
Metric FN/GSP can be calculated as follows:
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Calculating FN/GSP 
Metric FN/GSP can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FN/GSP 
This fairness definition asks the following question: 

 
“Just by the virtue of fact that an individual is member of group X, what are the chances they will be 
falsely denied the subsidy?” 
 
Finding no disparities using this metric implies that if we were to choose a random individual from a 
given group, we would have the same chance of picking out an eligible person who did not receive the 
subsidy across all groups.  
 
The Group-Adjusted False Negatives metric therefore considers the following groups in his phrasing 
of fairness: 

• The groups who do not receive the subsidy, including people who do not qualify for the 
subsidy (True Negatives); 

• The groups of persons who qualify for the subsidy (True Positives). 

 

False Omission Rate (FOR) 
With the False Omission Rate, we focus on the individuals who did not receive the subsidy, regardless 
of whether they deserved it, which are both the False Negatives and the True Negatives. Our main 
interest with this metric is to evaluate the fraction of people who were wrongly denied the subsidy 
from all the people who did not receive the subsidy. 
 
Calculating FOR 
The FOR can be calculated for each group with the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FOR 
When using FOR, we seek answers for questions like: 
Given that Sarah was denied a subsidy, what are the chances she was actually eligible for it? 
 
The FOR is useful for assistive models because the False Negatives are relatively easy to track down, 
as these are the people who did not receive the service or good when they were entitled to it.  
 

False Negative Rate (FNR) 
The False Negative Rate measures fairness specifically for people who need the intervention. This 
metric gives an answer to the following question: 
 
For individuals who needs the subsidy, what are the chances they will not receive the subsidy because 
they are a member of a given group?  

Interpretation of FN/GSP
This fairness definition asks the following question:

Just by the virtue of fact that an individual is member of group 
X, what are the chances they will be falsely denied the subsidy?

Finding no disparities using this metric implies that if we were to 
choose a random individual from a given group, we would have 
the same chance of picking out an eligible person who did not 
receive the subsidy across all groups. 

The Group-Adjusted False Negatives metric therefore considers 
the following groups in his phrasing of fairness:
•  The groups who do not receive the subsidy, including people 

who do not qualify for the subsidy (True Negatives);
•  The groups of persons who qualify for the subsidy (True 

Positives).
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False Omission Rate (FOR)
With the False Omission Rate, we focus on the individuals who did 
not receive the subsidy, regardless of whether they deserved it, 
which are both the False Negatives and the True Negatives. Our 
main interest with this metric is to evaluate the fraction of people 
who were wrongly denied the subsidy from all the people who did 
not receive the subsidy.

Calculating FOR
The FOR can be calculated for each group with the following 
formula:

   
 

35 
 

Calculating FN/GSP 
Metric FN/GSP can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FN/GSP 
This fairness definition asks the following question: 

 
“Just by the virtue of fact that an individual is member of group X, what are the chances they will be 
falsely denied the subsidy?” 
 
Finding no disparities using this metric implies that if we were to choose a random individual from a 
given group, we would have the same chance of picking out an eligible person who did not receive the 
subsidy across all groups.  
 
The Group-Adjusted False Negatives metric therefore considers the following groups in his phrasing 
of fairness: 

• The groups who do not receive the subsidy, including people who do not qualify for the 
subsidy (True Negatives); 

• The groups of persons who qualify for the subsidy (True Positives). 

 

False Omission Rate (FOR) 
With the False Omission Rate, we focus on the individuals who did not receive the subsidy, regardless 
of whether they deserved it, which are both the False Negatives and the True Negatives. Our main 
interest with this metric is to evaluate the fraction of people who were wrongly denied the subsidy 
from all the people who did not receive the subsidy. 
 
Calculating FOR 
The FOR can be calculated for each group with the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FOR 
When using FOR, we seek answers for questions like: 
Given that Sarah was denied a subsidy, what are the chances she was actually eligible for it? 
 
The FOR is useful for assistive models because the False Negatives are relatively easy to track down, 
as these are the people who did not receive the service or good when they were entitled to it.  
 

False Negative Rate (FNR) 
The False Negative Rate measures fairness specifically for people who need the intervention. This 
metric gives an answer to the following question: 
 
For individuals who needs the subsidy, what are the chances they will not receive the subsidy because 
they are a member of a given group?  

Interpretation of FOR
When using FOR, we seek answers for questions like:

Given that Sarah was denied a subsidy, what are the chances 
she was actually eligible for it?

The FOR is useful for assistive models because the False Negatives 
are relatively easy to track down, as these are the people who did 
not receive the service or good when they were entitled to it. 

False Negative Rate (FNR)
The False Negative Rate measures fairness specifically for people 
who need the intervention. This metric gives an answer to the 
following question:

For individuals who needs the subsidy, what are the chances 
they will not receive the subsidy because they are a member of 
a given group?

Calculating the FNR
The FNR can be calculated using the following formula:

   
 

36 
 

 
Calculating the FNR 
The FNR can be calculated using the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 	𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FNR 
Finding no disparities in FNR implies that, if we were to choose a random individual who qualifies for 
the subsidy from a given group, we would have the same chance of picking out a person incorrectly 
denied this subsidy across groups. 
 

Recall  
Often, models are used to fairly allocate a scarce resource to serve a small 
fraction of individuals who might benefit. If this is the case for your model, then 
using recall as your fairness metric might be a good option for the bias analysis. 
This metric gives insight into how effective the organization is in distributing 
the subsidy fairly amongst groups.  

 
Calculating Recall 
Recall can be calculated as follows: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	
𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
Alternatively, we can calculate recall by 1 – False Negative Rate: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	1 −	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
 

Interpretation of Recall  
With recall, we ask the following question: 

 
“Given that the organization cannot provide the subsidy to all people who apply, is it at least supplying 
the subsidy to individuals from all groups in a manner that reflects their level of need?” 

 
Suppose we compare the recall rates of men and women. Here, the recall represents the probability 
of an applicant who deserves the subsidy to be correctly supplied this financial good.  
 

7. Models with Punitive Interventions 
Three metrics fall under the scope of the punitive interventions, these are: 

• Group-Size Adjusted False Positives (FP/GSP) 
• False Discovery Rate Parity (FDR) 

• False Positive Rate Parity 

As discussed in section Punitive versus Assistive Interventions, for models with punitive interventions 
we often investigate the False Positives during the bias analysis to prevent that innocent people are 
picked out by the model for an undesired intervention.  

Recall is also named True 
Positives Parity or Equal 
Opportunity.  

Interpretation of FNR
Finding no disparities in FNR implies that, if we were to choose a 
random individual who qualifies for the subsidy from a given 
group, we would have the same chance of picking out a person 
incorrectly denied this subsidy across groups.



48 The Fairness Handbook  |  May 2022

Recall 
Often, models are used to fairly allocate a scarce resource to serve 
a small fraction of individuals who might benefit. If this is the case 
for your model, then using recall as your fairness metric might be a 
good option for the bias analysis. This metric gives insight into 
how effective the organization is in distributing the subsidy fairly 
amongst groups. 

Calculating Recall
Recall can be calculated as follows:
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Calculating the FNR 
The FNR can be calculated using the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 	𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FNR 
Finding no disparities in FNR implies that, if we were to choose a random individual who qualifies for 
the subsidy from a given group, we would have the same chance of picking out a person incorrectly 
denied this subsidy across groups. 
 

Recall  
Often, models are used to fairly allocate a scarce resource to serve a small 
fraction of individuals who might benefit. If this is the case for your model, then 
using recall as your fairness metric might be a good option for the bias analysis. 
This metric gives insight into how effective the organization is in distributing 
the subsidy fairly amongst groups.  

 
Calculating Recall 
Recall can be calculated as follows: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	
𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
Alternatively, we can calculate recall by 1 – False Negative Rate: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	1 −	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
 

Interpretation of Recall  
With recall, we ask the following question: 

 
“Given that the organization cannot provide the subsidy to all people who apply, is it at least supplying 
the subsidy to individuals from all groups in a manner that reflects their level of need?” 

 
Suppose we compare the recall rates of men and women. Here, the recall represents the probability 
of an applicant who deserves the subsidy to be correctly supplied this financial good.  
 

7. Models with Punitive Interventions 
Three metrics fall under the scope of the punitive interventions, these are: 

• Group-Size Adjusted False Positives (FP/GSP) 
• False Discovery Rate Parity (FDR) 

• False Positive Rate Parity 

As discussed in section Punitive versus Assistive Interventions, for models with punitive interventions 
we often investigate the False Positives during the bias analysis to prevent that innocent people are 
picked out by the model for an undesired intervention.  

Recall is also named True 
Positives Parity or Equal 
Opportunity.  

Alternatively, we can calculate recall by 1 – False Negative Rate:
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Calculating the FNR 
The FNR can be calculated using the following formula: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 	𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

 

 
Interpretation of FNR 
Finding no disparities in FNR implies that, if we were to choose a random individual who qualifies for 
the subsidy from a given group, we would have the same chance of picking out a person incorrectly 
denied this subsidy across groups. 
 

Recall  
Often, models are used to fairly allocate a scarce resource to serve a small 
fraction of individuals who might benefit. If this is the case for your model, then 
using recall as your fairness metric might be a good option for the bias analysis. 
This metric gives insight into how effective the organization is in distributing 
the subsidy fairly amongst groups.  

 
Calculating Recall 
Recall can be calculated as follows: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	
𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
Alternatively, we can calculate recall by 1 – False Negative Rate: 

𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹𝐹𝐹 = 	1 −	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐹𝐹𝐹𝐹
 

 
 

Interpretation of Recall  
With recall, we ask the following question: 

 
“Given that the organization cannot provide the subsidy to all people who apply, is it at least supplying 
the subsidy to individuals from all groups in a manner that reflects their level of need?” 

 
Suppose we compare the recall rates of men and women. Here, the recall represents the probability 
of an applicant who deserves the subsidy to be correctly supplied this financial good.  
 

7. Models with Punitive Interventions 
Three metrics fall under the scope of the punitive interventions, these are: 

• Group-Size Adjusted False Positives (FP/GSP) 
• False Discovery Rate Parity (FDR) 

• False Positive Rate Parity 

As discussed in section Punitive versus Assistive Interventions, for models with punitive interventions 
we often investigate the False Positives during the bias analysis to prevent that innocent people are 
picked out by the model for an undesired intervention.  

Recall is also named True 
Positives Parity or Equal 
Opportunity.  

Interpretation of Recall 
With recall, we ask the following question:

Given that the organization cannot provide the subsidy to all 
people who apply, is it at least supplying the subsidy to indivi-
duals from all groups in a manner that reflects their level of 
need?

Suppose we compare the recall rates of men and women. Here, 
the recall represents the probability of an applicant who deserves 
the subsidy to be correctly supplied this financial good. 

Recall is also named 
True Positives Parity 

or Equal Opportunity.
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7. Models with Punitive Interventions
Three metrics fall under the scope of the punitive interventions, 
these are:
•  Group-Size Adjusted False Positives (FP/GSP)
•  False Discovery Rate Parity (FDR)
•  False Positive Rate Parity

As discussed in section Punitive versus Assistive Interventions, for 
models with punitive interventions we often investigate the False 
Positives during the bias analysis to prevent that innocent people 
are picked out by the model for an undesired intervention. 

Group-Size Adjusted False Positives (FP/GSP)
Similar to FN/GSP, this metric considers the group sizes when 
computing the differences in False Positives across groups. Thus, 
with group-size adjusted False Positives, attempt to seek answers 
for questions like:

Just due to the fact that a person is member of a given group, 
what are the chances they’ll be wrongly classified as fraudulent?

 
Calculating FP/GSP
For each demographic group, the FP/GSP can be computed as 
follows:
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Group-Size Adjusted False Positives (FP/GSP) 
Similar to FN/GSP, this metric considers the group sizes when computing the differences in False 
Positives across groups. Thus, with group-size adjusted False Positives, attempt to seek answers for 
questions like: 

Just due to the fact that a person is member of a given group, what are the chances they’ll be wrongly 
classified as fraudulent? 

Calculating FP/GSP 
For each demographic group, we FP/GSP can be computed as follows: 

𝐹𝐹𝐹𝐹/𝐺𝐺𝐺𝐺𝐹𝐹 = 	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

Interpreting FP/GSP 
Finding no disparities between the groups when using this metric implies that, if we were to choose a 
random person from a given group (regardless of whether they are innocent or the group-level fraud 
rates), we would have the same chance of picking out a wrongly convicted individual across all groups.  

This metric might be useful when there is no sufficient information available about the True Positives, 
False Negatives or True Negatives, as the denominator is just the sum of all predictions and therefore 
does not require you to specify how they are distributed across the confusion matrix categories.   

False Discovery Rate Parity (FDR) 
The False Discovery Rate describes the proportion of positively classified instances which were falsely 
identified as such (Ruf & Detyniecki, 2021). Thus, it focuses specifically on the people who receive the 
(undesired) intervention and calculates the fraction of wrong fraud convictions from all persons who 
were classified as fraudulent.  

Calculating FDR 
The False Discovery Rate can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹 =	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 +	𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpreting FDR 
The FDR is a simple and well-scoped metric for the bias analysis, as it only focuses on the people who 
received the undesired intervention. This metric can also be used to compare the biases of the model 
with the biases of the decision makers and other people who intervene, because we only need the 
positive predictions for this metric. It is often more difficult to find the data for the people who 
committed fraud but were not recognized as such by the model, e.g., the False Negatives. 

Interpreting FP/GSP
Finding no disparities between the groups when using this metric 
implies that, if we were to choose a random person from a given 
group (regardless of whether they are innocent or the 
group-level fraud rates), we would have the same chance of 
picking out a wrongly convicted individual across all groups. 

This metric might be useful when there is no sufficient information 
available about the True Positives, False Negatives or True Nega-
tives, as the denominator is just the sum of all predictions and 
therefore does not require you to specify how they are distributed 
across the confusion matrix categories. 

False Discovery Rate Parity (FDR)
The False Discovery Rate describes the proportion of positively 
classified instances which were falsely identified as such (Ruf & 
Detyniecki, 2021). Thus, it focuses specifically on the people who 
receive the (undesired) intervention and calculates the fraction of 
wrong fraud convictions from all persons who were classified as 
fraudulent. 

Calculating FDR
The False Discovery Rate can be calculated as follows:

37 

Group-Size Adjusted False Positives (FP/GSP) 
Similar to FN/GSP, this metric considers the group sizes when computing the differences in False 
Positives across groups. Thus, with group-size adjusted False Positives, attempt to seek answers for 
questions like: 

Just due to the fact that a person is member of a given group, what are the chances they’ll be wrongly 
classified as fraudulent? 

Calculating FP/GSP 
For each demographic group, we FP/GSP can be computed as follows: 

𝐹𝐹𝐹𝐹/𝐺𝐺𝐺𝐺𝐹𝐹 = 	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝑁𝑁𝐹𝐹𝑁𝑁𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

Interpreting FP/GSP 
Finding no disparities between the groups when using this metric implies that, if we were to choose a 
random person from a given group (regardless of whether they are innocent or the group-level fraud 
rates), we would have the same chance of picking out a wrongly convicted individual across all groups.  

This metric might be useful when there is no sufficient information available about the True Positives, 
False Negatives or True Negatives, as the denominator is just the sum of all predictions and therefore 
does not require you to specify how they are distributed across the confusion matrix categories.   

False Discovery Rate Parity (FDR) 
The False Discovery Rate describes the proportion of positively classified instances which were falsely 
identified as such (Ruf & Detyniecki, 2021). Thus, it focuses specifically on the people who receive the 
(undesired) intervention and calculates the fraction of wrong fraud convictions from all persons who 
were classified as fraudulent.  

Calculating FDR 
The False Discovery Rate can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹 =	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 +	𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹	𝐹𝐹𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpreting FDR 
The FDR is a simple and well-scoped metric for the bias analysis, as it only focuses on the people who 
received the undesired intervention. This metric can also be used to compare the biases of the model 
with the biases of the decision makers and other people who intervene, because we only need the 
positive predictions for this metric. It is often more difficult to find the data for the people who 
committed fraud but were not recognized as such by the model, e.g., the False Negatives. 
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Interpreting FDR
The FDR is a simple and well-scoped metric for the bias analysis, as 
it only focuses on the people who received the undesired interven-
tion. This metric can also be used to compare the biases of the 
model with the biases of the decision makers and other people 
who intervene, because we only need the positive predictions for 
this metric. It is often more difficult to find the data for the people 
who committed fraud but were not recognized as such by the 
model, e.g., the False Negatives.

False Positive Rate Parity
As opposed to FDR where we investigated the people who 
received the intervention, the False Positive Rate focuses on the 
people who should not receive the intervention, which are the 
innocent individuals. Thus, the FPR provides an answer for the 
following question:

For an innocent person, what are the chances they will be 
wrongly classified as fraudulent due to their membership of 
a given group?

Calculating FPR
The False Positive Rate can be calculated as follows:
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False Positive Rate Parity 
As opposed to FDR where we investigated the people who received the intervention, the False 
Positive Rate focuses on the people who should not receive the intervention, which are the innocent 
individuals. Thus, the FPR provides an answer for the following question: 

For an innocent person, what are the chances they will be wrongly classified as fraudulent due to their 
membership of a given group? 

Calculating FPR 
The False Discovery Rate can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹 =	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 +	𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	Nega𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpreting FPR 
Finding no disparities for FPR implies that, if we would choose a random innocent individual from a 
given group, we would find the same chance of picking out a wrongly convicted person across all 
groups. 

Additional Metric: Equalized Odds 
Although the Fairness Tree covered almost all well-known fairness metrics, we discuss an 
unmentioned metric worth discussing: Equalized Odds.  

Equalized Odds 
Equalized Odds extends the Recall/True Positive Rate Parity metric with the addition of the False 
Positive Rate (FPR) (Hardt et al., 2016). Here, we evaluate for all groups whether they have an equal 
FPR and TPR across groups, which is suitable for models with both punitive and assistive 
interventions. Using this metric, we provide an answer for the following question: 

Due to the fact that a person is member of a given group, what are the chances that a person who qualifies 
for the subsidy receives this financial grant, and a person who does not qualify is denied the subsidy? 

Calculating Equalized Odds 
Equalized Odds is calculated by dividing the True Positives by all positive predictions: 

𝐸𝐸𝐸𝐸𝑟𝑟𝐹𝐹𝐹𝐹𝑃𝑃𝐸𝐸𝐹𝐹𝐸𝐸	𝑂𝑂𝐸𝐸𝐸𝐸𝐹𝐹 = 	
𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 	𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpretation of Equalized Odds 
With Equalized Odds we primarily want to find out whether the model makes more mistakes for some 
groups than for other groups (Weerts, 2021b). This metric gives insight in whether the accuracy of the 
model is equally high in all groups and is able to highlight both allocation and quality-of-service harms.  

Interpreting FPR
Finding no disparities for FPR implies that, if we would choose 
a random innocent individual from a given group, we would find 
the same chance of picking out a wrongly convicted person 
across all groups.

Additional Metric: Equalized Odds
Although the Fairness Tree covered almost all well-known fairness 
metrics, we discuss an unmentioned metric worth discussing: 
Equalized Odds. 

Equalized Odds
Equalized Odds extends the Recall/True Positive Rate Parity 
metric with the addition of the False Positive Rate (FPR) (Hardt et 
al., 2016). Here, we evaluate for all groups whether they have an 
equal FPR and TPR across groups, which is suitable for models with 
both punitive and assistive interventions. Using this metric, we 
provide an answer for the following question:
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Due to the fact that a person is member of a given group, what 
are the chances that a person who qualifies for the subsidy 
receives this financial grant, and a person who does not qualify 
is denied the subsidy?

Calculating Equalized Odds
Equalized Odds is calculated by dividing the True Positives by all 
positive predictions:
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False Positive Rate Parity 
As opposed to FDR where we investigated the people who received the intervention, the False 
Positive Rate focuses on the people who should not receive the intervention, which are the innocent 
individuals. Thus, the FPR provides an answer for the following question: 

For an innocent person, what are the chances they will be wrongly classified as fraudulent due to their 
membership of a given group? 

Calculating FPR 
The False Discovery Rate can be calculated as follows: 

𝐹𝐹𝐹𝐹𝐹𝐹 =	
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 +	𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	Nega𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpreting FPR 
Finding no disparities for FPR implies that, if we would choose a random innocent individual from a 
given group, we would find the same chance of picking out a wrongly convicted person across all 
groups. 

Additional Metric: Equalized Odds 
Although the Fairness Tree covered almost all well-known fairness metrics, we discuss an 
unmentioned metric worth discussing: Equalized Odds.  

Equalized Odds 
Equalized Odds extends the Recall/True Positive Rate Parity metric with the addition of the False 
Positive Rate (FPR) (Hardt et al., 2016). Here, we evaluate for all groups whether they have an equal 
FPR and TPR across groups, which is suitable for models with both punitive and assistive 
interventions. Using this metric, we provide an answer for the following question: 

Due to the fact that a person is member of a given group, what are the chances that a person who qualifies 
for the subsidy receives this financial grant, and a person who does not qualify is denied the subsidy? 

Calculating Equalized Odds 
Equalized Odds is calculated by dividing the True Positives by all positive predictions: 

𝐸𝐸𝐸𝐸𝑟𝑟𝐹𝐹𝐹𝐹𝑃𝑃𝐸𝐸𝐹𝐹𝐸𝐸	𝑂𝑂𝐸𝐸𝐸𝐸𝐹𝐹 = 	
𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹 + 	𝑇𝑇𝑟𝑟𝑟𝑟𝐹𝐹	𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹	

Interpretation of Equalized Odds 
With Equalized Odds we primarily want to find out whether the model makes more mistakes for some 
groups than for other groups (Weerts, 2021b). This metric gives insight in whether the accuracy of the 
model is equally high in all groups and is able to highlight both allocation and quality-of-service harms.  

Interpretation of Equalized Odds
With Equalized Odds we primarily want to find out whether the 
model makes more mistakes for some groups than for other 
groups (Weerts, 2021b). This metric gives insight in whether the 
accuracy of the model is equally high in all groups and is able to 
highlight both allocation and quality-of-service harms. 

Forming Groups from Datasets
After choosing the fairness metrics, we compute the performance 
disparity across groups. However, establishing which groups will be 
compared and investigated for bias is often a difficult task. Some 
people belong to multiple vulnerable groups, e.g., women with a 
black skin colour or older people with a disability status, which 
increases the chance for intersectional bias. This type of bias 
occurs when a model produces more errors or assigns more 
undesired outcomes for people who belong to multiple disadvan-
taged demographic groups. 

Below, we offer some suggestions for splitting the features into 
groups.
1.  Create groups based on top-down knowledge of 

sociotechnical context
Our most important advice is to consult the domain experts to 
gain insight into the population for which the AI system is de-
signed. 
2. Create groups based on feature and error distributions
For the simpler features, it can help to create feature distribution 
plot to check the distribution of the feature values and to see 
which groups often helps to see if any ‘natural’ groups stand out. 
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For the more complex features, the error distribution can also be 
informative. First, apply a feature importance method on the 
model to find out which features have the highest predictive value. 
Then, create error distribution plots for these features where the 
number or magnitude of errors is placed on the Y-axis and the 
feature values are placed on the X-axis (see Figure 16). 

Figure 16: An example of a feature-error distribution plot. Here, we see 
that the model particularly underperforms for households earning 10, 
70 or 90K, which may indicate the presence of bias for these groups.

The visualisations give insight in the error distribution amongst the 
features and can visualize which categories or values the model is 
underperforming for, hereby potentially hinting to a demographic 
group associated with these values.
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Determining the Bias Threshold
After applying the fairness metrics on the demographic groups, we 
analyse the results with stakeholders, with whom we establish the 
thresholds for the fairness metrics. These thresholds are needed 
to draw conclusions about the presence and magnitude of bias in 
the algorithm and to determine which actions should be taken to 
mitigate the bias. Determining the thresholds can be a complicat-
ed task, as the impact of the bias can vary by metric, by feature, 
and by demographic group.

At this time, there are not yet widely accepted and implemented 
approaches available for determining this threshold. Instead, it will 
require a tailored approach in collaboration with your stakeholders

Conducting the Bias Analysis
In this chapter, we discussed the components required for the bias 
analysis. In summary, this is the step-by-step plan: 

1.  Determine which definition of fairness is appropriate for your 
AI system. Establish with stakeholders the consequences when 
the model shows bias against when demographic groups. 

2.  Choose (a) fairness metric(s) that fits the fairness definition, 
and formulate to which question on fairness this metric can 
provide an answer. 

3.  Select the features from the Feature Review that will be 
investigated for bias, and create demographic groups on 
which the bias metric(s) will be applied. 
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4.  Establish the thresholds for the bias metric. 
5.  Carry out the bias analysis and make sure to document the 

entire process. 
6.  Discuss the bias analysis results with stakeholders. When biases 

are found, identify the source of the bias and return to 
previous stages of the Fairness Pipeline to mitigate the bias.

See the Appendix for additional useful sources that discuss fairness 
definitions, metrics and other concepts from this chapter in more 
detail.

Chapter Takeaways
•  We can investigate fairness from the individual fairness and 

group fairness perspectives, of which the first compares the 
model’s outcomes for similar individuals, and the latter com-
pares whether the model produces more harmful outcomes for 
persons due to their membership to a given group. 

•  As adopting a fairness definition for the model requires a deep 
understanding of the socio-technical context, we recommend 
closely collaborating with stakeholders in these undertakings.

•  The Fairness Tree is a helpful guide for selecting an appropriate 
fairness metric.

•  Creating demographic groups from the dataset can be done 
based on top-down knowledge of the AI system, and based on 
a bottom-up approach using feature and error distributions.

There is no universally 
accepted definition of 

what it means for a 
model to be fair, and 

there is no clear guideline 
on which fairness 

measures as “best”.
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6. Conclusion

Whether AI systems will be beneficial for all people depends on 
the choices we make through the model development cycle: how 
do we represent complex and difficult to measure constructs? How 
do we choose the features to predict our target variable? Most 
importantly, can we trust the data that fuels the AI system? Is it 
representative and complete?

In this Fairness Handbook, we provided insights and practical tools 
about how harmful biases impact the fairness of models. If not 
taken care of these biases, they will become baked in and scaled 
by AI systems, thereby increasing their negative impact on 
vulnerable groups and individuals. 

As you know by now, when we want to find and mitigate traces of 
discrimination, it is impossible to solely approach fairness from a 
technical-oriented perspective. Since biases in models origin from 
human decisions and societal inequalities, there is an interdiscipli-
nary approach required, where domain experts and impacted 
groups of people play a crucial role in determining which factors 
the model development team needs to consider before imple-
menting and deploying a model. These factors include investigat-
ing the target variable and sensitive attributes of the dataset and 
simulating different scenarios of possible biases in the model. 

The purpose of this book is not to give you a ready-made answer 
immediately applicable to your own use case, as each model, 
dataset and context requires specific interventions. Instead, we 
aimed to provide guidance based on evidence-based methods and 
our own experiences during our bias analysis to help you choose 
which interventions are most suitable in your quest to create fairer 
models. 
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8. Appendix

The Fairness Handbook appendices elaborate on the topics 
discussed in the Fairness Pipeline and Bias Analysis chapters. 

A. Overview of Traps and Biases 
In this chapter of the appendix, we discuss the traps and biases 
that may arise during the model development cycle. This overview 
further elaborates on the concepts encountered in Chapter 4: The 
Fairness Pipeline. 

Sources of fairness issues in models can already be present before 
data collection and model training. Often, these sources can be 
found at the initial phases of the model development cycle, where 
the model’s objectives are determined, and the real-world problem 
is translated to a problem that can be solved with predictive 
algorithms. We refer to these sources as design traps. 

When there are problems in the data, the model, or in the deploy-
ment of the model that lead to skewed outcomes, we speak of 
biases. These biases can lead to discrimination against individuals 
or groups defined by protected attributes, such as nationality or 
disability status. 

Solutionist Trap
Machine learning is not the solution for every task. Avoid falling in 
the solutionist trap, where a (new) technology’s advantages are 
overestimated and its risks are underestimated (Weerts, 2021a). 
Particularly, the objectiveness of the data and algorithms is often 
overvalued. Therefore, rather than asking “can we use machine 
learning”, it is better to ask, “how can we solve this problem?” 
and then consider machine learning as one of the options.

Abstraction Trap
If something goes wrong in the translation of the real world to the 
model, we speak of an abstraction trap, where we fail to capture 
all the relevant aspects and the sociotechnical context of the 
model. Let’s say we are designing a model to measure employee 
quality. We would likely use a (combination of) proxy variable(s), but 
these may not fully capture the complexity of the target variable. 

Omitted Variable Bias
The abstraction trap can lead to omitted variable bias, a form of 
statistical bias which occurs when one or multiple relevant features 
are left out of a model. This type of bias can indicate procedural 
harm when the impact of the missing feature is attributed to the 
remaining features. Say, for example, that we create a regres-
sion-based model to determine whether a person is eligible for a 
sport scholarship, and that the model considers age as feature, 
which is heavily correlated with health history. If health history is 
not included as feature, the model might wrongly produce 
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outcomes based on age, while in fact, these outcomes depend on 
health history. Eventually, the results of the model wrongly indicate 
direct discrimination and procedural harm, while this is not the 
case. 

Aggregation Bias
Aggregation bias arises when a one-size-fit-all model is used for 
groups with different data distributions. Here, the wrong assump-
tion is made that the labels hold the exact same meaning across 
groups: as datasets often represent people or groups with 
different backgrounds and norms, the given variables can also 
mean different things across them (Suresh & Guttag, 2021). 
Consequently, the model might not work well for any of the 
groups.

When the aggregation bias occurs simultaneously with representa-
tion bias, the model will primarily work well for the majority 
population (Weerts, 2021a). This problem relates to relates to 
underfitting, as the model is unable to capture the more subtle 
differences in data distribution. Failing to recognize the different 
data distribution of the minority groups leads to a model that has a 
poor predictive performance for these underrepresented groups. 
This in turn leads to allocation harm and quality-of-service harm.

For example, in loan eligibility models, the set of actions that a 
model can often conduct is either approving or denying a loan, 
while in reality there is a much wider range of actions possible.

Ripple Effect Trap
The Ripple Effect Trap takes place when the introduction of the 
model into an existing social system changes the behaviours and 
values of the system in unforeseeable ways and potentially leading 
to procedural harm (Selbst et al., 2019). As the model produces 
outcomes that lead to interventions conducted by people and 
organizations, it is essential to understand how the interventions 
affect the context and the dynamics of the system. 

For example, a model used for hiring new personnel may change 
the behaviour and power dynamics of the HR department, which 
can eventually lead away from the desired goals.

Historical Bias
Historical bias can encode human and real-world biases into AI 
models. This might inflict representation harm to particular groups 
that already experience structural discrimination. Historical bias 
can lead to construct validity bias, if the labels of the variables are 
based on human judgment. As humans are biased, this may lead to 
biased labelling.
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Historical bias can also occur when the data is a good representa-
tion of a biased reality. The variable is labelled correctly (so there is 
no measurement error nor construct validity bias present), but its 
values are different across groups due to structural inequalities in 
society. For example, if a hiring AI system is based on data that 
contain a pattern of favouritism towards men, it may lead to a 
system which has discrimination against women built into it. 

The feedback mechanisms of a model can amplify the existing 
historical biases when new data is collected based on the output 
of a biased model (Weerts, 2021a). This feedback loop can lead to 
a measurement error like predictive policing, where the model 
continuously targets the same groups of people. For example, a 
model predicting in which areas more police should be deployed 
can result in higher arrest rates for this area, which in turn leads the 
model to deploy even more police to these regions. Over longer 
span of time, these patterns of overpolicing will be reflected in the 
data, which leads to even more biased data.

Construct Validity Bias
When a variable does not accurately measure the construct it is 
supposed to measure, we speak of construct validity bias (Weerts, 
2021a). Construct validity bias stems from failing to translate an 
abstract real-world concept to a concept that can be measured, 
leading to representation harm, allocation harm and quality-of-ser-
vice harm.

When a variable does not accurately measure the construct it is 
supposed to measure, we speak of construct validity bias (Weerts, 
2021a). Construct validity bias stems from failing to translate an 
abstract real-world concept to a concept that can be measured, 
leading to representation harm, allocation harm and quality-of-ser-
vice harm. 

There is a specific risk for this when working with sensitive attrib-
utes which are made-up constructs, such as socio-economic status, 
or complex constructs, such as religion, as this creates a risk that 
these features mean different things for different individuals. For 
example, a feature regarding race can be created using self-report-
ed racial identity, observed race based on appearance, or it can be 
constructed using observations of how individuals interact with 
each other. It is therefore important to report how sensitive 
attributes are constructed and whether this process was equal for 
all groups in the dataset (Weerts, 2021b). 

Representation Bias
If there is a lack of geographical, social or ethnic diversity in the 
dataset, the model is unable to generalize well for these groups 
and will thus produce more errors for these groups. We refer to 
this type of measurement error as representation bias. These 
errors can lead to quality-of-service harm, as the AI system will not 
work as well for minority groups as for the majority of the popula-
tion.

If there's one thing you 
should remember from this 
handbook, it's that data is 
subjective. The features, 
categories and the 
measurement methods in 
which information is 
converted into data is a 
process carried out by 
people who unconsciously 
bring their own 
background, unintended 
biases and real-life 
prejudices into the end 
product. 

Therefore, be critical of 
what features represent 
and keep asking yourself 
whether the target 
variable, feature or other 
piece of data actually 
represents what it should 
represent.
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Representation bias is mainly caused by selection bias. Selection 
bias occurs when the data collection or selection results in a 
non-random sample of the population (Weerts, 2021a). There are 
several subtypes of selection bias:
•  Coverage bias: Occurs when the population we want to make 

predictions about is not accurately represented in the dataset. 
For example, we have a model that predicts people’s enjoy-
ment of a movie and want to collect data to train the model. 
If we collect surveys data from people leaving a movie theatre 
viewing of the movie, we sample from a population that is likely 
to like the movie more than average (Developers, 2019). 

•  Sampling bias: Occurs when data is not collected randomly 
from the target group. For example, when collecting data to 
build a model that predicts how many people would be likely to 
apply for a job at a company based on their applications, it 
would not make sense to only pick the first 200 applicants for 
the dataset. By including proper randomization during data 
collection, all the instances have equal probability of being 
included in the sample, which increases the representativeness 
of the data. 

•  Self-selection bias: Occurs when people from certain groups 
more often opt-out of the data collection process. For example, 
people with strong opinions about a topic may respond more 
often to surveys than people with mild opinions. This inclination 
for a person to opt in for a survey is only problematic when this 
choice correlates with the features in the dataset. 

•  Hawthorne Effect: this bias takes place when data subjects 

behave differently when they know they are observed. The 
Hawthorne Effect is particularly prevalent when self-reports are 
used (e.g., surveys or questionnaires), due to people being 
influenced by social desirability. 

Learning Bias
Representation bias may lead to learning bias, which happens 
when modelling choices amplify performance disparities across 
different examples in the data, thereby disproportionately affect-
ing underrepresented groups or individuals (Suresh & Guttag, 
2021).

This bias is often caused by the prioritisation of some objective 
over another. For example, when we optimize for compactness or 
privacy, we often reduce the influence of underrepresented data 
on the model. Consequently, the model’s overall performance can 
decrease for the minority groups, as the model has now mostly 
preserved information about the most frequent features which can 
often be found in the majority group. This causes the model to not 
generalize well for underrepresented groups. 

Evaluation Bias
When the performance metrics and procedures are inappropriate 
for the model, we speak of evaluation bias. A common occurrence 
of this bias is when a single measure is used to report the perfor-
mance of all the groups in the dataset. This single measure often 
hides the underperformance of models on minority groups, which 
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in turn is often caused by the lack of data on these groups. 

When investigating the model for evaluation bias, it is important to 
closely inspect the assumptions behind the used performance 
metrics and to determine whether they are suitable for your 
model. 

Deployment Bias
Deployment bias arises when there is a mismatch between the 
model’s design and the context in which it will be applied. The role 
of the complex sociotechnical context in which the model is used 
is often overlooked, which means that a good performing model 
can be harmful due to it being used by decision makers and 
institutions in a wrong way, thereby leading to quality-of-service 
harm.

For example, the results of the model can be interpreted wrongly 
or differently for different groups by human decision-makers, who 
in turn might experience automation or confirmation bias. Confir-
mation bias is the tendency to primarily focus on information that 
confirms one’s beliefs (Weerts, 2021a)

Automation bias 
Automation bias refers to a tendency of people to favour results 
generated by automated systems over those generated by 
non-automated systems (e.g., human inspectors), regardless of the 
error rates of each system (Suresh & Guttag, 2021). This bias 

creates the risk that the errors of the models are overlooked and 
that the consequences are discovered a much later stage.

In addition, machine learning models are often reused in context 
that are different then what they were initially designed for. If this 
is not done in an intentional way, there is a risk of the portability 
trap emerging, where differences between the intended and actual 
contexts are neglected.

Another way in which deployment bias may manifest is through 
temporal bias. This bias arises from differences in populations and 
behaviours over time (Mehrabi et al., 2019). For example, many 
“patterns” of daily life have been radically changed by the 
Covid-19 pandemic, which has reduced the predictive value of 
much of the pre-pandemic data when applied to a post-pandemic 
world. 

Both deployment and automation bias differ from other types of 
biases in that they are not linked to the data nor the model. 
Rather, these biases occur when decision-makers and other 
stakeholders behave unexpectedly based on the AI system’s 
outcomes.
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B. Mitigation Algorithms
This chapter of the appendix discusses the specifically designed 
fairness mitigation algorithms that can be used to detect, 
mitigate and prevent biases in models. We made this distinction to 
stimulate considering both policy-based and algorithm-based 
approaches for analysing models for biases, as the bias analysis is a 
multi-disciplinary pursuit. 

Generally, we can distinguish three moments in which bias 
mitigation techniques can be applied
•  Before creating the model, as pre-processing techniques
•  After training the model: in-processing techniques
•  After the model evaluation on the test: post-processing 

techniques

Raw Data Data Cleaning

Standard
Preprocessing

Preprocessing
Algorithm

Train Data

Test Data

Standard
Training

In- processing
Algorithm

Classifier
Performance
Evaluation

Unbiased
Model Outcomes

Post- processing
Algorithm

Figure 17: Bias Mitigation during model 
development cycle. Inspired from (Giurca, 2021)
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Pre-processing Techniques
The first branch of techniques addresses bias by transforming 
the data before creating the model in order to remove the 
underlying discrimination (Mehrabi et al., 2021). These transfor-
mations may include modifying the labels, observed data and the 
weighting of the features. After de-biasing the training data, the 
model can be trained in the standard way. 

Pre-processing techniques are preferred over in-processing and 
post-processing algorithms when the model is only available as a 
“black box” or when it originates from a third party, because 
pre-processing methods do not need to modify the model. 

Examples of pre-processing techniques include optimized 
pre-processing (Calmon et al., 2017) and reweighing instances 
(Kamiran & Calders, 2012). The reweighing technique weighs the 
examples in each group and label combination differently to 
ensure fairness before classification. The observations of the 
disadvantaged group with a favourable label get higher weights, 
while observations of the privileged group with a favourable label 
get lower weights (Giurca, 2021). 

In-processing Techniques
In-processing techniques aim to modify and change learning 
algorithms to remove discrimination during the training process 
of the model. This modification can either consist of incorporating 
changes into the objective function, or it can impose new fairness 

constraints (Mehrabi et al., 2021). For example, the cost function 
of the learning algorithm can be modified so that it now includes 
an extra discrimination-aware regularization term. 

Generally, it is recommended to use in-processing techniques 
when the model is built in-house, as this branch of techniques 
offers the highest flexibility to choose the trade-off between model 
performance and fairness. A disadvantage, however, is that 
in-processing algorithms often depend on the type of AI model, 
which makes them less generalisable onto other AI models. 
 
Some examples of in-processing techniques include:
•  Adversarial Debiasing (Hu Zhang et al., 2018) 

Using generative adversarial networks, this method learns a 
classifier to maximize prediction accuracy while reducing an 
adversary's ability to determine the protected attribute from 
predictions. Eventually, this approach leads to a fair classifier, as 
the predictions cannot carry any discrimination information that 
the adversary can exploit. 

•  Prejudice Remover (Kamishima et al., 2012) 
This technique adds a discrimination-aware regularization term 
to the learning objective that penalizes unfair solutions. For 
instance, the cost function can take into account what the 
differences are between the learning algorithms' classification 
performance on protected versus non-protected classes, and it 
can penalize the total loss based on the magnitude of the 
difference. 
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Post-processing Techniques
Finally, post-processing techniques are applied on a holdout set on 
after the model has been trained. This branch of techniques is 
most suitable when we have a “black box” model of which the 
training data or the learning algorithm cannot be modified 
(Mehrabi et al., 2021). 

The main idea behind post-processing techniques is to manipulate 
output predictions in such way that it minimizes a fairness metric. 
Using the outputs of the classifier, thresholds are sought for each 
group that eventually result in equal prediction distributions. 
Another branch of post-processing techniques is directly interven-
ing in the validation dataset to choose the appropriate classifica-
tion threshold that ensures fairness. 

•  Reject Option Classifier (Kamiran et al., 2012)against females 
Gives favourable outcomes to unprivileged groups and unfa-
vourable outcomes to privileged groups in a confidence band 
around the decision boundary with the highest uncertainty

•  Equalized Odds Post-processing (Hardt et al., 2016)  
Solves a linear program to find probabilities with which to 
change output labels to optimize equalized odds.

•  Calibrated Equalized Odds (Pleiss et al., 2017) 
Optimizes over calibrated classifier score outputs to find 
pro babilities with which to change output labels with an 
equalized odds objective.

C. Further readings
To read more about fairness definitions and metrics, we recom-
mend the following sources:
•  Verma, S., & Rubin, J. (2018). Fairness definitions explained. 

Proceedings - International Conference on Software 
Engineering, 1–7. https://doi.org/10.1145/3194770.3194776

•  Weerts, H. J. P. (2021). An Introduction to Algorithmic Fairness. 
1–18. http://arxiv.org/abs/2105.05595

•  Suresh H, Guttag J (2021). A Framework for Understanding 
Sources of Harm throughout the Machine Learning Life Cycle 
- ACM International Conference Proceeding Series.  
https://doi.org/10.1145/3465416.3483305

•  Garg, P., Villasenor, J., & Foggo, V. (2020). Fairness Metrics: 
A Comparative Analysis. Proceedings - 2020 IEEE International 
Conference on Big Data, Big Data 2020, 3662–3666.  
https://doi.org/10.1109/BigData50022.2020.9378025

•  Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, 
A. (2019). A survey on bias and fairness in machine learning. In 
arXiv. https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing

Because conducting a bias analysis is a challenging job, we 
recommend following online workshops to gain practical know-
ledge. We found these workshops useful:
•  Fairness Workshop by the developers of the Fairness Tree
•  Fairness Workhop by Hilde Weerts
•  Lecture on Fairness and Bias by MIT

https://doi.org/10.1145/3194770.3194776
https://doi.org/10.1145/3465416.3483305
https://doi.org/10.1109/BigData50022.2020.9378025
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.youtube.com/watch?v=HwdDQWelPy0&ab_channel=DataScienceforSocialGood
https://www.youtube.com/watch?v=es5nT7Qhj-w&feature=youtu.be&ab_channel=PyLadiesAmsterdam
https://www.youtube.com/watch?v=wmyVODy_WD8&ab_channel=AlexanderAmini


67 The Fairness Handbook  |  May 2022

D. Example of a Model Card

Figure 18: Suggested Prompts for Model 
Cards. Source: (M. Mitchell et al., 2019)
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